南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (5): 929-941.doi: 10.12122/j.issn.1673-4254.2025.05.05
唐培培(), 谈勇(
), 殷燕云, 聂晓伟, 黄菁宇, 左文婷, 李玉玲
收稿日期:
2024-03-26
出版日期:
2025-05-20
发布日期:
2025-05-23
通讯作者:
谈勇
E-mail:756919091@qq.com;xijun1025@163.com
作者简介:
唐培培,在读博士研究生,主治中医师,E-mail: 756919091@qq.com
基金资助:
Peipei TANG(), Yong TAN(
), Yanyun YIN, Xiaowei NIE, Jingyu HUANG, Wenting ZUO, Yuling LI
Received:
2024-03-26
Online:
2025-05-20
Published:
2025-05-23
Contact:
Yong TAN
E-mail:756919091@qq.com;xijun1025@163.com
摘要:
目的 基于网络药理学探讨调周滋阴方治疗早发性卵巢功能不全(POI)的作用机制,通过动物实验进行验证,并设计临床对照试验验证调周滋阴方对该病的临床疗效。 方法 利用TCMSP、PubChem、Swiss Target Prediction、Genecards、OMIM等数据库筛选相应靶点,获取核心PPI,进行GO、KEGG富集分析,构建“疾病-通路-靶点-成分-药物”网络,采用AutoDock对核心活性成分和核心靶点进行分子对接验证。通过动物实验,采用Western blotting进一步验证网络药理学结果。设计临床对照试验,对照组予芬吗通治疗,试验组在此基础上加用调周滋阴方,通过观察两组内分泌指标(FSH、LH、E2、AMH)、窦卵泡数、Kupperman评分、不良反应发生率及妊娠率,验证调周滋阴方治疗该病的临床有效性。 结果 通过网络药理学方法,得到调周滋阴方治疗早发性卵巢功能不全的潜在靶点有163个;核心活性成分主要为山奈酚、β-谷甾醇、木犀草素、槲皮素,核心靶点主要为SRC、TP53、STAT3、PIK3CA、MAPK3等;GO功能富集主要包括细胞运动的正调控、蛋白质磷酸化等;KEGG富集通路主要包括癌症通路、PI3K-Akt信号通路等;分子对接结果显示核心活性成分与核心靶点间均有良好的结合能力。利用动物实验对关键通路进行验证,结果显示,与POI模型组大鼠比较,调周滋阴方可升高POI大鼠卵巢组织中p-PI3K和p-Akt蛋白表达(P<0.05),验证了网络药理学的部分预测结果。临床试验显示,两组E2较治疗前升高,FSH、LH较治疗前降低,Kupperman评分较治疗前降低(P<0.05),且试验组优于对照组(P<0.05);两组窦卵泡数较治疗前均升高(P<0.05),试验组AMH较治疗前升高(P<0.05),试验组与对照组间的差异无统计学意义(P>0.05);治疗结束4周后,试验组治疗效果优于同期对照组(P<0.05)。 结论 调周滋阴方具有多成分、多靶点、多途径的治疗特点,其中激活PI3K/Akt通路是其作用机制之一,从而改善POI患者卵巢储备功能,缓解临床症状,提高临床疗效,具有良好的临床应用前景。
唐培培, 谈勇, 殷燕云, 聂晓伟, 黄菁宇, 左文婷, 李玉玲. 调周滋阴方治疗早发性卵巢功能不全的疗效、安全性及作用机制[J]. 南方医科大学学报, 2025, 45(5): 929-941.
Peipei TANG, Yong TAN, Yanyun YIN, Xiaowei NIE, Jingyu HUANG, Wenting ZUO, Yuling LI. Tiaozhou Ziyin recipe for treatment of premature ovarian insufficiency: efficacy, safety and mechanism[J]. Journal of Southern Medical University, 2025, 45(5): 929-941.
TCM | MOL ID | Molecule name | OB (%) | DL | |
---|---|---|---|---|---|
Shudi baishao shanzhuyu | A1 | MOL000359 | Sitosterol | 36.91 | 0.75 |
Shudi shanzhuyu sharen | B1 | MOL000449 | Stigmasterol | 43.83 | 0.76 |
Baishao shanzhuyu tusizi sharen | C1 | MOL000358 | Beta-sitosterol | 36.91 | 0.75 |
Baishao tusizi | D1 | MOL000422 | Kaempferol | 41.88 | 0.24 |
Shanzhuyu danshen sharen | E1 | MOL001771 | Poriferast-5-en-3beta-ol | 36.91 | 0.75 |
Baishao | BS1 | MOL001919 | (3S,5R,8R,9R,10S,14S)-3,17-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5, 6,7,9-hexahydro-1H-cyclopenta[a]phenanthrene-15,16-dione | 43.56 | 0.53 |
BS2 | MOL001924 | Paeoniflorin | 53.87 | 0.79 | |
Shanzhuyu | SZY1 | MOL001494 | Mandenol | 42 | 0.19 |
SZY2 | MOL001495 | Ethyl linolenate | 46.1 | 0.2 | |
Tusizi | TSZ1 | MOL001558 | Sesamin | 56.55 | 0.83 |
TSZ8 | MOL000098 | Quercetin | 46.43 | 0.28 | |
Danshen | DS1 | MOL001601 | 1,2,5,6-Tetrahydrotanshinone | 38.75 | 0.36 |
DS8 | MOL000006 | Luteolin | 36.16 | 0.25 | |
Sharen | SR1 | MOL001755 | 24-Ethylcholest-4-en-3-one | 36.08 | 0.76 |
SR2 | MOL001973 | Sitosteryl acetate | 40.39 | 0.85 |
表1 调周滋阴方部分有效活性成分列表
Tab.1 List of effective active ingredients in tiaozhou ziyin recipe
TCM | MOL ID | Molecule name | OB (%) | DL | |
---|---|---|---|---|---|
Shudi baishao shanzhuyu | A1 | MOL000359 | Sitosterol | 36.91 | 0.75 |
Shudi shanzhuyu sharen | B1 | MOL000449 | Stigmasterol | 43.83 | 0.76 |
Baishao shanzhuyu tusizi sharen | C1 | MOL000358 | Beta-sitosterol | 36.91 | 0.75 |
Baishao tusizi | D1 | MOL000422 | Kaempferol | 41.88 | 0.24 |
Shanzhuyu danshen sharen | E1 | MOL001771 | Poriferast-5-en-3beta-ol | 36.91 | 0.75 |
Baishao | BS1 | MOL001919 | (3S,5R,8R,9R,10S,14S)-3,17-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5, 6,7,9-hexahydro-1H-cyclopenta[a]phenanthrene-15,16-dione | 43.56 | 0.53 |
BS2 | MOL001924 | Paeoniflorin | 53.87 | 0.79 | |
Shanzhuyu | SZY1 | MOL001494 | Mandenol | 42 | 0.19 |
SZY2 | MOL001495 | Ethyl linolenate | 46.1 | 0.2 | |
Tusizi | TSZ1 | MOL001558 | Sesamin | 56.55 | 0.83 |
TSZ8 | MOL000098 | Quercetin | 46.43 | 0.28 | |
Danshen | DS1 | MOL001601 | 1,2,5,6-Tetrahydrotanshinone | 38.75 | 0.36 |
DS8 | MOL000006 | Luteolin | 36.16 | 0.25 | |
Sharen | SR1 | MOL001755 | 24-Ethylcholest-4-en-3-one | 36.08 | 0.76 |
SR2 | MOL001973 | Sitosteryl acetate | 40.39 | 0.85 |
Name | Degree |
---|---|
SRC | 104 |
TP53 | 96 |
STAT3 | 88 |
PIK3CA | 86 |
MAPK3 | 86 |
HRAS | 84 |
PIK3R1 | 84 |
MAPK1 | 82 |
HSP90AA1 | 80 |
PTPN11 | 64 |
表2 调周滋阴方治疗POI的核心靶点
Tab.2 Core targets of Tiaozhou Ziyin recipe in the treatment of POI
Name | Degree |
---|---|
SRC | 104 |
TP53 | 96 |
STAT3 | 88 |
PIK3CA | 86 |
MAPK3 | 86 |
HRAS | 84 |
PIK3R1 | 84 |
MAPK1 | 82 |
HSP90AA1 | 80 |
PTPN11 | 64 |
Sub group | GO term | -LogP |
---|---|---|
BP | Positive regulation of locomotion | 57.01529 |
BP | Positive regulation of cell motility | 56.17373 |
BP | Positive regulation of cell migration | 55.77701 |
BP | Protein phosphorylation | 55.0968 |
BP | Positive regulation of phosphorylation | 54.99759 |
BP | Response to hormone | 54.48073 |
BP | Transmembrane receptor protein tyrosine kinase signaling pathway | 47.79846 |
BP | Positive regulation of protein phosphorylation | 47.32929 |
BP | Response to peptide | 47.32309 |
BP | Enzyme-linked receptor protein signaling pathway | 46.18651 |
CC | Membrane raft | 22.13493 |
CC | Membrane microdomain | 22.10097 |
CC | Receptor complex | 17.86078 |
CC | Caveola | 15.1191 |
CC | Focal adhesion | 13.80176 |
CC | Cell-substrate junction | 13.60269 |
CC | Plasma membrane raft | 13.26789 |
CC | Side of membrane | 12.02636 |
CC | External side of plasma membrane | 10.71497 |
CC | Extracellular matrix | 10.53049 |
MF | Protein kinase activity | 53.06992 |
MF | Phosphotransferase activity, alcohol group as acceptor | 48.91392 |
MF | Kinase activity | 48.35798 |
MF | Protein tyrosine kinase activity | 35.63223 |
MF | Kinase binding | 28.34491 |
MF | Transmembrane receptor protein tyrosine kinase activity | 28.34218 |
MF | Transmembrane receptor protein kinase activity | 27.83784 |
MF | Protein serine/threonine kinase activity | 25.19876 |
MF | Protein serine kinase activity | 23.51593 |
MF | Protein kinase binding | 22.3736 |
表3 GO功能富集分析
Tab.3 GO functional enrichment analysis
Sub group | GO term | -LogP |
---|---|---|
BP | Positive regulation of locomotion | 57.01529 |
BP | Positive regulation of cell motility | 56.17373 |
BP | Positive regulation of cell migration | 55.77701 |
BP | Protein phosphorylation | 55.0968 |
BP | Positive regulation of phosphorylation | 54.99759 |
BP | Response to hormone | 54.48073 |
BP | Transmembrane receptor protein tyrosine kinase signaling pathway | 47.79846 |
BP | Positive regulation of protein phosphorylation | 47.32929 |
BP | Response to peptide | 47.32309 |
BP | Enzyme-linked receptor protein signaling pathway | 46.18651 |
CC | Membrane raft | 22.13493 |
CC | Membrane microdomain | 22.10097 |
CC | Receptor complex | 17.86078 |
CC | Caveola | 15.1191 |
CC | Focal adhesion | 13.80176 |
CC | Cell-substrate junction | 13.60269 |
CC | Plasma membrane raft | 13.26789 |
CC | Side of membrane | 12.02636 |
CC | External side of plasma membrane | 10.71497 |
CC | Extracellular matrix | 10.53049 |
MF | Protein kinase activity | 53.06992 |
MF | Phosphotransferase activity, alcohol group as acceptor | 48.91392 |
MF | Kinase activity | 48.35798 |
MF | Protein tyrosine kinase activity | 35.63223 |
MF | Kinase binding | 28.34491 |
MF | Transmembrane receptor protein tyrosine kinase activity | 28.34218 |
MF | Transmembrane receptor protein kinase activity | 27.83784 |
MF | Protein serine/threonine kinase activity | 25.19876 |
MF | Protein serine kinase activity | 23.51593 |
MF | Protein kinase binding | 22.3736 |
ID | Pathway | GeneRatio | P | Count |
---|---|---|---|---|
hsa05200 | Pathways in cancer | 0.453988 | 6.19E-86 | 74 |
hsa04151 | PI3K-Akt signaling pathway | 0.300613 | 2.97E-55 | 49 |
hsa05205 | Proteoglycans in cancer | 0.245399 | 3.2E-51 | 40 |
hsa05215 | Prostate cancer | 0.196319 | 3.38E-49 | 32 |
hsa01521 | EGFR tyrosine kinase inhibitor resistance | 0.171779 | 3.99E-44 | 28 |
hsa05417 | Lipid and atherosclerosis | 0.214724 | 8.47E-42 | 35 |
hsa01522 | Endocrine resistance | 0.171779 | 5.01E-41 | 28 |
hsa04933 | AGE-RAGE signaling pathway in diabetic complications | 0.171779 | 9.62E-41 | 28 |
hsa05206 | MicroRNAs in cancer | 0.233129 | 1.66E-40 | 38 |
hsa04015 | Rap1 signaling pathway | 0.202454 | 7.19E-39 | 33 |
hsa04014 | Ras signaling pathway | 0.208589 | 1.07E-38 | 34 |
hsa04010 | MAPK signaling pathway | 0.220859 | 2.44E-38 | 36 |
hsa05163 | Human cytomegalovirus infection | 0.196319 | 3.1E-36 | 32 |
hsa05230 | Central carbon metabolism in cancer | 0.141104 | 1.92E-35 | 23 |
hsa05218 | Melanoma | 0.141104 | 4.14E-35 | 23 |
hsa04218 | Cellular senescence | 0.171779 | 9.59E-35 | 28 |
hsa05161 | Hepatitis B | 0.171779 | 2.98E-34 | 28 |
hsa05207 | Chemical carcinogenesis - receptor activation | 0.184049 | 6.44E-34 | 30 |
hsa05167 | Kaposi sarcoma-associated herpesvirus infection | 0.177914 | 1.6E-33 | 29 |
hsa05223 | Non-small cell lung cancer | 0.134969 | 4.06E-33 | 22 |
表4 KEGG通路富集分析
Tab.4 KEGG pathway enrichment analysis
ID | Pathway | GeneRatio | P | Count |
---|---|---|---|---|
hsa05200 | Pathways in cancer | 0.453988 | 6.19E-86 | 74 |
hsa04151 | PI3K-Akt signaling pathway | 0.300613 | 2.97E-55 | 49 |
hsa05205 | Proteoglycans in cancer | 0.245399 | 3.2E-51 | 40 |
hsa05215 | Prostate cancer | 0.196319 | 3.38E-49 | 32 |
hsa01521 | EGFR tyrosine kinase inhibitor resistance | 0.171779 | 3.99E-44 | 28 |
hsa05417 | Lipid and atherosclerosis | 0.214724 | 8.47E-42 | 35 |
hsa01522 | Endocrine resistance | 0.171779 | 5.01E-41 | 28 |
hsa04933 | AGE-RAGE signaling pathway in diabetic complications | 0.171779 | 9.62E-41 | 28 |
hsa05206 | MicroRNAs in cancer | 0.233129 | 1.66E-40 | 38 |
hsa04015 | Rap1 signaling pathway | 0.202454 | 7.19E-39 | 33 |
hsa04014 | Ras signaling pathway | 0.208589 | 1.07E-38 | 34 |
hsa04010 | MAPK signaling pathway | 0.220859 | 2.44E-38 | 36 |
hsa05163 | Human cytomegalovirus infection | 0.196319 | 3.1E-36 | 32 |
hsa05230 | Central carbon metabolism in cancer | 0.141104 | 1.92E-35 | 23 |
hsa05218 | Melanoma | 0.141104 | 4.14E-35 | 23 |
hsa04218 | Cellular senescence | 0.171779 | 9.59E-35 | 28 |
hsa05161 | Hepatitis B | 0.171779 | 2.98E-34 | 28 |
hsa05207 | Chemical carcinogenesis - receptor activation | 0.184049 | 6.44E-34 | 30 |
hsa05167 | Kaposi sarcoma-associated herpesvirus infection | 0.177914 | 1.6E-33 | 29 |
hsa05223 | Non-small cell lung cancer | 0.134969 | 4.06E-33 | 22 |
Core active component | Core target | Binding energy (kcal·mol-1) |
---|---|---|
Kaempferol | SRC | -6.0 |
TP53 | -8.8 | |
STAT3 | -8.0 | |
PIK3CA | -6.7 | |
MAPK3 | -7.5 | |
Beta-sitosterol | SRC | -4.9 |
TP53 | -6.9 | |
STAT3 | -6.3 | |
PIK3CA | -5.4 | |
MAPK3 | -6.5 | |
Luteolin | SRC | -7.0 |
TP53 | -8.5 | |
STAT3 | -7.9 | |
PIK3CA | -6.5 | |
MAPK3 | -9.0 | |
Quercetin | SRC | -7.2 |
TP53 | -8.9 | |
STAT3 | -8.2 | |
PIK3CA | -6.1 | |
MAPK3 | -8.2 |
表5 核心活性成分与核心靶点对接结合能
Tab.5 Molecular docking results of core active components and core targets of Tiaozhou Ziyin recipe
Core active component | Core target | Binding energy (kcal·mol-1) |
---|---|---|
Kaempferol | SRC | -6.0 |
TP53 | -8.8 | |
STAT3 | -8.0 | |
PIK3CA | -6.7 | |
MAPK3 | -7.5 | |
Beta-sitosterol | SRC | -4.9 |
TP53 | -6.9 | |
STAT3 | -6.3 | |
PIK3CA | -5.4 | |
MAPK3 | -6.5 | |
Luteolin | SRC | -7.0 |
TP53 | -8.5 | |
STAT3 | -7.9 | |
PIK3CA | -6.5 | |
MAPK3 | -9.0 | |
Quercetin | SRC | -7.2 |
TP53 | -8.9 | |
STAT3 | -8.2 | |
PIK3CA | -6.1 | |
MAPK3 | -8.2 |
图8 部分核心活性成分与核心靶点相互作用的分子对接示意图
Fig.8 Schematic diagram of molecular docking of interaction between some core active components and core targets. A: Docking site between kaempferol and TP53. B: Docking site between beta-sitosterol and STAT3. C: Docking site between luteolin and MAPK3.D: Docking site between quercetin and SRC.E: Docking site between luteolin and PIK3CA.
图9 各组大鼠卵巢组织p-PI3K、p-Akt蛋白的表达
Fig.9 Expression of p-PI3K and p-Akt proteins in ovarian tissue of the rats in each group. *P<0.05, **P<0.01 vs Model group.
Group | Age (year) | Disease course (month) |
---|---|---|
Control group | 30.23±4.04 | 18.90±9.65 |
Experimental group | 30.93±3.69 | 19.83±9.93 |
t/ Z | -0.701 | -0.369 |
P | 0.486 | 0.713 |
表6 两组年龄、病程比较
Tab.6 Comparison of age and disease course between the two groups (Mean±SD, n=30)
Group | Age (year) | Disease course (month) |
---|---|---|
Control group | 30.23±4.04 | 18.90±9.65 |
Experimental group | 30.93±3.69 | 19.83±9.93 |
t/ Z | -0.701 | -0.369 |
P | 0.486 | 0.713 |
Hormone | Control group | Experimental group | t/Z | P | |
---|---|---|---|---|---|
AMH (ng/mL) | Before treatment | 0.58±0.31 | 0.55±0.31 | 0.471 | 0.64 |
After treatment | 0.65±0.32 | 0.72±0.37# | -0.789 | 0.433 | |
Four weeks after treatment | 0.60±0.33 | 0.69±0.35 | -0.995 | 0.324 | |
E2 (ng/L) | Before treatment | 29.47±9.53 | 27.57±8.89 | -0.854 | 0.393 |
After treatment | 40.63±13.35# | 47.70±13.76# | -2.019 | 0.048 | |
Four weeks after treatment | 31.00±8.78 | 41.47±13.13* | -3.629 | <0.001 | |
FSH (mIU/mL) | Before treatment | 33.19±7.89 | 34.51±7.60 | -0.872 | 0.383 |
After treatment | 20.91±8.21# | 17.10±6.24# | 2.026 | 0.047 | |
Four weeks after treatment | 30.37±7.73 | 20.70±8.46* | -4.266 | <0.001 | |
LH (mIU/mL) | Before treatment | 21.11±5.71 | 23.14±7.18 | -1.124 | 0.261 |
After treatment | 16.08±5.37# | 12.46±4.11# | -2.883 | 0.004 | |
Four weeks after treatment | 19.16±6.29 | 15.27±6.28* | -2.343 | 0.019 |
表7 两组治疗前、后及治疗结束4周后性激素水平比较
Tab.7 Comparison of sex hormone levels before, after and four weeks after treatment between the two groups (n=30)
Hormone | Control group | Experimental group | t/Z | P | |
---|---|---|---|---|---|
AMH (ng/mL) | Before treatment | 0.58±0.31 | 0.55±0.31 | 0.471 | 0.64 |
After treatment | 0.65±0.32 | 0.72±0.37# | -0.789 | 0.433 | |
Four weeks after treatment | 0.60±0.33 | 0.69±0.35 | -0.995 | 0.324 | |
E2 (ng/L) | Before treatment | 29.47±9.53 | 27.57±8.89 | -0.854 | 0.393 |
After treatment | 40.63±13.35# | 47.70±13.76# | -2.019 | 0.048 | |
Four weeks after treatment | 31.00±8.78 | 41.47±13.13* | -3.629 | <0.001 | |
FSH (mIU/mL) | Before treatment | 33.19±7.89 | 34.51±7.60 | -0.872 | 0.383 |
After treatment | 20.91±8.21# | 17.10±6.24# | 2.026 | 0.047 | |
Four weeks after treatment | 30.37±7.73 | 20.70±8.46* | -4.266 | <0.001 | |
LH (mIU/mL) | Before treatment | 21.11±5.71 | 23.14±7.18 | -1.124 | 0.261 |
After treatment | 16.08±5.37# | 12.46±4.11# | -2.883 | 0.004 | |
Four weeks after treatment | 19.16±6.29 | 15.27±6.28* | -2.343 | 0.019 |
Group | Antral follicle count | Kupperman score (points) | ||||
---|---|---|---|---|---|---|
Before treatment | After treatment | Four weeks after treatment | Before treatment | After treatment | Four weeks after treatment | |
Control group | 3.67±1.54 | 4.57±1.76# | 3.83±1.44 | 21.40±6.47 | 15.40±6.70# | 18.93±6.23 |
Experimental group | 3.73±1.57 | 5.33±1.63# | 5.03±1.52* | 20.20±7.12 | 11.07±4.53# | 12.87±4.97* |
t/Z | -0.166 | -1.755 | -2.859 | 0.683 | 2.936 | 4.170 |
P | 0.869 | 0.085 | 0.004 | 0.497 | 0.005 | <0.001 |
表8 两组治疗前、后及治疗结束4周后窦卵泡数及Kupperman评分比较
Tab.8 Comparison of antral follicle count and Kupperman score before, after and 4 weeks after treatment between the two groups (n=30)
Group | Antral follicle count | Kupperman score (points) | ||||
---|---|---|---|---|---|---|
Before treatment | After treatment | Four weeks after treatment | Before treatment | After treatment | Four weeks after treatment | |
Control group | 3.67±1.54 | 4.57±1.76# | 3.83±1.44 | 21.40±6.47 | 15.40±6.70# | 18.93±6.23 |
Experimental group | 3.73±1.57 | 5.33±1.63# | 5.03±1.52* | 20.20±7.12 | 11.07±4.53# | 12.87±4.97* |
t/Z | -0.166 | -1.755 | -2.859 | 0.683 | 2.936 | 4.170 |
P | 0.869 | 0.085 | 0.004 | 0.497 | 0.005 | <0.001 |
Group | Rate of adverse reaction incidence | Rate of pregnancy |
---|---|---|
Control group | 3 (10%) | 1 (3.3%) |
Experimental group | 1 (3.3%) | 2 (6.7%) |
χ2 | 1.071 | 0.351 |
P | 0.301 | 0.554 |
表9 两组患者不良反应发生率及妊娠率比较
Tab.9 Comparison of rate of adverse reaction incidence and pregnancy between the two groups [n (%), n=30]
Group | Rate of adverse reaction incidence | Rate of pregnancy |
---|---|---|
Control group | 3 (10%) | 1 (3.3%) |
Experimental group | 1 (3.3%) | 2 (6.7%) |
χ2 | 1.071 | 0.351 |
P | 0.301 | 0.554 |
1 | 陈子江, 田秦杰, 乔 杰, 等. 早发性卵巢功能不全的临床诊疗中国专家共识[J]. 中华妇产科杂志, 2017, 52(9): 577-81. DOI: 10.3760/cma.j.issn.0529-567x.2017.09.001 |
2 | Szeliga A, Calik-Ksepka A, Maciejewska-Jeske M, et al. Autoim-mune diseases in patients with premature ovarian insufficiency-our current state of knowledge[J]. Int J Mol Sci, 2021, 22(5): 2594. |
3 | 孙玉英, 陈淑萍, 谈 勇. 滋阴补阳序贯法联合西药对DOR大鼠卵巢Smad2、Smad3、Smad7 mRNA表达的影响[J]. 华中科技大学学报: 医学版, 2018, 47(3): 300-4. DOI: 10.3870/j.issn.1672-0741.2018.03.009 |
4 | 王飞虹, 谈 勇, 殷燕云, 等. 滋阴补阳方序贯联合拮抗剂方案对卵巢低反应体外受精结局的影响[J]. 中华中医药杂志, 2019, 34(7): 3327-9. |
5 | 罗倩倩, 谈 勇, 胡荣魁, 等. 滋阴方治疗排卵障碍性不孕症的机制及价值基于网络药理学方法[J]. 南方医科大学学报, 2021, 41(3): 319-28. DOI: 10.12122/j.issn.1673-4254.2021.03.02 |
6 | 唐培培, 赵 娟, 谈 勇, 等. 滋阴补阳方序贯法联合促排卵治疗肾虚型多囊卵巢综合征不孕症临床疗效[J]. 中华中医药杂志, 2022, 37(12): 7531-4. |
7 | Du XY, Huang J, Xu LQ, et al. The proto-oncogene c-src is involved in primordial follicle activation through the PI3K, PKC and MAPK signaling pathways[J]. Reprod Biol Endocrinol, 2012, 10: 58. |
8 | Chan Y, Zhu BS, Zhang JM, et al. Associations between TP53 and MDM2 polymorphisms and the follicle-stimulating hormone/luteinizing hormone ratio in infertile women[J]. Genet Test Mol Biomarkers, 2018, 22(7): 405-12. |
9 | Vagnini LD, Renzi A, Petersen CG, et al. Correlation of TP53 (rs1625895), TP73 (rs3765730), MMP9 (rs17576), and MTHFR (rs868014) polymorphisms with low ovarian reserve[J]. Eur J Obstet Gynecol Reprod Biol, 2022, 269: 132-7. |
10 | Yuan XL, Zhou XF, He YT, et al. C/EBPβ promotes STAT3 expression and affects cell apoptosis and proliferation in porcine ovarian granulosa cells[J]. Genes, 2018, 9(6): 295. |
11 | Zhang GF, Cui ZF, Li JJ, et al. miR-122-5p regulates proliferation and apoptosis of chicken granulosa cells of hierarchal follicles by targeting MAPK3[J]. Gene, 2022, 824: 146397. |
12 | Wang SH, Hao J, Zhang C, et al. KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2[J]. Sci China Life Sci, 2022, 65(10): 1985-97. |
13 | Periferakis A, Periferakis K, Badarau IA, et al. Kaempferol: antimicrobial properties, sources, clinical, and traditional applications[J]. Int J Mol Sci, 2022, 23(23): 15054. |
14 | Nejabati HR, Roshangar L. Kaempferol: a potential agent in the pr-evention of colorectal cancer[J]. Physiol Rep, 2022, 10(20): e15488. |
15 | Sengupta B, Biswas P, Roy D, et al. Anticancer properties of kaempferol on cellular signaling pathways[J]. Curr Top Med Chem, 2022, 22(30): 2474-82. |
16 | 王明迪, 梁 天, 赵千惠, 等. 淫羊藿素和山柰酚对鸡等级前卵泡颗粒细胞发育的影响[J]. 中国家禽, 2023, 45(4): 57-63. |
17 | Zeng ZC, Jiang J, Wang XJ, et al. Kaempferol ameliorates in-vitro and in-vivo postovulatory oocyte ageing in mice[J]. Reprod Biomed Online, 2022, 45(6): 1065-83. |
18 | Khan Z, Nath N, Rauf A, et al. Multifunctional roles and pharmacological potential of β-sitosterol: emerging evidence toward clinical applications[J]. Chem Biol Interact, 2022, 365: 110117. |
19 | Ma LY, Ma Y, Liu YX. β-Sitosterol protects against food allergic response in BALB/c mice by regulating the intestinal barrier function and reconstructing the gut microbiota structure[J]. Food Funct, 2023, 14(10): 4456-69. |
20 | Chen YK, Yin S, Liu R, et al. β-Sitosterol activates autophagy to inhibit the development of hepatocellular carcinoma by regulating the complement C5a receptor 1/alpha fetoprotein axis[J]. Eur J Pharmacol, 2023, 957: 175983. |
21 | Yu YY, Cao Y, Huang WL, et al. β-sitosterol ameliorates endometrium receptivity in PCOS-like mice: the mediation of gut microbiota[J]. Front Nutr, 2021, 8: 667130. |
22 | 赵 帅, 陈冬梅, 虎 娜, 等. β-谷甾醇通过PI3K/AKT通路影响颗粒细胞增殖及凋亡[J]. 宁夏医科大学学报, 2021, 43(4): 339-44. DOI: 10.16050/j.cnki.issn1674-6309.2021.04.004 |
23 | Franza L, Carusi V, Nucera E, et al. Luteolin, inflammation and cancer: Special emphasis on gut microbiota[J]. Biofactors, 2021, 47(2): 181-9. |
24 | Huang Y, Zhang X. Luteolin alleviates polycystic ovary syndrome in rats by resolving insulin resistance and oxidative stress[J]. Am J Physiol Endocrinol Metab, 2021, 320(6): E1085-92. |
25 | Hosseini A, Razavi BM, Banach M, et al. Quercetin and metabolic syndrome: a review[J]. Phytother Res, 2021, 35(10): 5352-64. |
26 | Deepika, Maurya PK. Health benefits of quercetin in age-related diseases[J]. Molecules, 2022, 27(8): 2498. |
27 | Chen Y, Zhao Y, Miao CY, et al. Quercetin alleviates cyclophosphamide-induced premature ovarian insufficiency in mice by reducing mitochondrial oxidative stress and pyroptosis in granulosa cells[J]. J Ovarian Res, 2022, 15(1): 138. |
[1] | 陈鑫源, 吴成挺, 李瑞迪, 潘雪芹, 张耀丹, 陶俊宇, 林才志. 双术汤通过P53/SLC7A11/GPX4通路诱导胃癌细胞铁死亡[J]. 南方医科大学学报, 2025, 45(7): 1363-1371. |
[2] | 王立明, 陈宏睿, 杜燕, 赵鹏, 王玉洁, 田燕歌, 刘新光, 李建生. 益气滋肾方通过抑制PI3K/Akt/NF-κB通路改善小鼠慢性阻塞性肺疾病的炎症反应[J]. 南方医科大学学报, 2025, 45(7): 1409-1422. |
[3] | 朱胤福, 李怡燃, 王奕, 黄颖而, 龚昆翔, 郝文波, 孙玲玲. 桂枝茯苓丸活性成分常春藤皂苷元通过抑制JAK2/STAT3通路抑制宫颈癌细胞的生长[J]. 南方医科大学学报, 2025, 45(7): 1423-1433. |
[4] | 何丽君, 陈晓菲, 闫陈昕, 师林. 扶正化积汤治疗非小细胞肺癌的分子机制:基于网络药理学及体外实验验证[J]. 南方医科大学学报, 2025, 45(6): 1143-1152. |
[5] | 李国永, 黎仁玲, 刘艺婷, 柯宏霞, 李菁, 王新华. 牛蒡子治疗小鼠病毒性肺炎后肺纤维化的机制:基于代谢组学、网络药理学和实验验证方法[J]. 南方医科大学学报, 2025, 45(6): 1185-1199. |
[6] | 管丽萍, 颜燕, 卢心怡, 李智峰, 高晖, 曹东, 侯晨曦, 曾靖宇, 李欣怡, 赵洋, 王俊杰, 方会龙. 复方积雪草减轻小鼠日本血吸虫引起的肝纤维化:通过调控TLR4/MyD88通路抑制炎症-纤维化级联反应[J]. 南方医科大学学报, 2025, 45(6): 1307-1316. |
[7] | 梁晓涛, 熊一凡, 刘雪琪, 梁小珊, 朱晓煜, 谢炜. 活血疏风颗粒通过抑制TLR4/NF-κB通路改善慢性偏头痛小鼠的中枢敏化[J]. 南方医科大学学报, 2025, 45(5): 986-994. |
[8] | 冉念东, 刘杰, 徐剑, 张永萍, 郭江涛. 黑骨藤正丁醇萃取成分治疗大鼠阿尔茨海默病的药效学及作用机制[J]. 南方医科大学学报, 2025, 45(4): 785-798. |
[9] | 徐皓男, 张放, 黄钰莹, 姚其盛, 管悦琴, 陈浩. 百蕊草通过调节肠道菌群和调控EGFR/PI3K/Akt信号通路改善小鼠抗生素相关性腹泻[J]. 南方医科大学学报, 2025, 45(2): 285-295. |
[10] | 高俊杰, 叶开, 吴竞. 槲皮素通过调控TP53基因抑制肾透明细胞癌的增殖和迁移[J]. 南方医科大学学报, 2025, 45(2): 313-321. |
[11] | 刘莹, 李柏睿, 李永财, 常禄博, 王娇, 杨琳, 颜永刚, 屈凯, 刘继平, 张岗, 沈霞. 加味逍遥丸通过神经递质调节、抗炎抗氧化及肠道菌群调控改善大鼠的抑郁样行为[J]. 南方医科大学学报, 2025, 45(2): 347-358. |
[12] | 褚乔, 王小娜, 续佳颖, 彭荟林, 赵裕琳, 张静, 陆国玉, 王恺. 白头翁皂苷D通过多靶点和多途径抑制三阴性乳腺癌侵袭转移[J]. 南方医科大学学报, 2025, 45(1): 150-161. |
[13] | 龙秀鹏, 陶顺, 阳绅, 李素云, 饶利兵, 李莉, 张哲. 槲皮素通过抑制MAPK信号通路改善心力衰竭[J]. 南方医科大学学报, 2025, 45(1): 187-196. |
[14] | 徐朦, 陈丽娜, 吴金玉, 刘丽丽, 施美, 周灏, 张国梁. “白花蛇舌草-半枝莲”治疗原发性肝癌的机制研究:基于网络药理学、分子对接及体外实验验证[J]. 南方医科大学学报, 2025, 45(1): 80-89. |
[15] | 刘青, 刘敬, 郑逸航, 雷金, 黄建华, 刘思妤, 刘芳, 彭群龙, 张远芳, 王俊杰, 李玉娟. 积雪草活性成分槲皮素通过介导STAT3磷酸化抑制IL-23/IL-17A炎症轴发挥抗银屑病作用[J]. 南方医科大学学报, 2025, 45(1): 90-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||