南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (5): 942-953.doi: 10.12122/j.issn.1673-4254.2025.05.06
收稿日期:
2024-11-01
出版日期:
2025-05-20
发布日期:
2025-05-23
通讯作者:
金晨
E-mail:ningliancangmang43@163.com;Jinchen@csu.edu.cn
作者简介:
廖宇翔,博士, E-mail: ningliancangmang43@163.com
基金资助:
Yuxiang LIAO(), Jingping LIU, Bo LIU, Xiyun FEI, Chen JIN(
)
Received:
2024-11-01
Online:
2025-05-20
Published:
2025-05-23
Contact:
Chen JIN
E-mail:ningliancangmang43@163.com;Jinchen@csu.edu.cn
摘要:
目的 探讨Circ_EPHB4通过miR-424-5p/Wnt3信号轴调控胶质瘤细胞替莫唑胺敏感性的机制。 方法 收集我院2019年1月~2021年12月25例原发性胶质瘤患者和25例经替莫唑胺(TMZ)基化疗治愈后的复发性胶质瘤患者组织标本。qRT-PCR检测Circ_EPHB4表达敲低及敲低对照组细胞中circ_EPHB4、miR-424-5p及Wnt3 mRNA的表达水平。Western blotting检测Wnt3蛋白表达水平。细胞活力、克隆形成和细胞凋亡分别通过CCK-8、克隆形成和流式细胞仪检测评估。采用双荧光素酶报告和RNA免疫沉淀(RIP)试验验证circ_EPHB4、miR-424-5p和Wnt3间的靶向调控关系。皮下成瘤实验评估circ_EPHB4对胶质瘤肿瘤形成能力的影响。 结果 胶质瘤组织和细胞中circ EPHB4的表达明显高于正常神经组织和星形胶质细胞(P=0.014)。与si-NC对照组相比,si-Circ_EPHB4降低了TMZ耐药胶质瘤细胞中circ_EPHB4表达水平(A172:P=0.008;SHG44:P=0.009)。circ_EPHB4表达敲低降低了TMZ耐药胶质瘤细胞对TMZ的IC50值(A172:P=0.012;SHG44:P=0.022),抑制了胶质瘤细胞克隆形成(A172:P=0.004;SHG44:P=0.006),并促进胶质瘤细胞凋亡(A172:P=0.002;SHG44:P=0.00)。胶质瘤组织中miR-424-5p和circ_EPHB4表达呈负相关(r=-0.556,P=0.011)。miR-424-5p表达敲低,逆转了circ_EPHB4表达敲低引起的IC50值下降(P=0.001)、克隆形成抑制(P=0.016)和细胞凋亡促进作用(P=0.001)。此外,miR-424-5p表达敲低,还削弱了circ_EPHB4表达敲低对PCNA、P-gp、MRP1和bax表达的影响(P=0.004)。 结论 circ_EPHB4通过“海绵吸附”miR-424-5p调控Wnt3表达,由此调节TMZ耐药胶质瘤细胞克隆形成、细胞凋亡和TMZ敏感性,circ_EPHB4是逆转胶质瘤耐药的潜在靶点。
廖宇翔, 刘景平, 刘博, 费喜云, 金晨. Circ_EPHB4通过miR-424-5p/Wnt3信号轴调控胶质瘤细胞对替莫唑胺的化疗敏感性[J]. 南方医科大学学报, 2025, 45(5): 942-953.
Yuxiang LIAO, Jingping LIU, Bo LIU, Xiyun FEI, Chen JIN. Circ_EPHB4 regulates temozolomide sensitivity in glioma cells through the miR-424-5p/Wnt3 axis[J]. Journal of Southern Medical University, 2025, 45(5): 942-953.
图1 Circ_EPHB4的表达与胶质瘤TMZ敏感性的关系
Fig.1 Relationship between circ_EPHB4 expression and TMZ sensitivity of glioma cells. A: Comparison of circ_EPHB4 expression in primary glioma tissues (sensitive), recurrent glioma tissues (resistant), and healthy brain tissues (normal). B: Comparison of c irc_EPHB4 expression in HBE, A172, A172/TMZ, SHG44, and SHG44/TMZ cells. ***P<0.001, ##P<0.01 vs HBE cells.
Characteristic | Expression of circ_EPHB4 | |||
---|---|---|---|---|
All | Lower expression (n=25) | Higher exprssion (n=25) | P | |
Gender | ||||
Male | 37 | 15 | 22 | 0.288 |
Female | 13 | 10 | 3 | |
Age(year) | ||||
≤60 | 42 | 22 | 20 | 0.701 |
>60 | 8 | 3 | 5 | |
Pathological grade | ||||
I-II | 32 | 13 | 19 | 0.139 |
III-IV | 18 | 12 | 6 | |
Tumor size (cm) | ||||
<4 | 28 | 19 | 9 | 0.009 |
≥4 | 22 | 6 | 16 | |
Preoperative Karnofsky Performance Status (KPS) score | ||||
<70 | 30 | 10 | 20 | 0.008 |
≥70 | 20 | 15 | 5 | |
Number of tumors | ||||
Single | 26 | 17 | 9 | 0.065 |
Multiple | 24 | 8 | 16 |
表1 circ_EPHB4表达与临床病理特征的相关性
Tab.1 Correlation between circ_EPHB4 expression and clinicopathological characteristics of glioma patients
Characteristic | Expression of circ_EPHB4 | |||
---|---|---|---|---|
All | Lower expression (n=25) | Higher exprssion (n=25) | P | |
Gender | ||||
Male | 37 | 15 | 22 | 0.288 |
Female | 13 | 10 | 3 | |
Age(year) | ||||
≤60 | 42 | 22 | 20 | 0.701 |
>60 | 8 | 3 | 5 | |
Pathological grade | ||||
I-II | 32 | 13 | 19 | 0.139 |
III-IV | 18 | 12 | 6 | |
Tumor size (cm) | ||||
<4 | 28 | 19 | 9 | 0.009 |
≥4 | 22 | 6 | 16 | |
Preoperative Karnofsky Performance Status (KPS) score | ||||
<70 | 30 | 10 | 20 | 0.008 |
≥70 | 20 | 15 | 5 | |
Number of tumors | ||||
Single | 26 | 17 | 9 | 0.065 |
Multiple | 24 | 8 | 16 |
图2 Circ_EPHB4抑制细胞克隆形成,增强TMZ耐药胶质瘤细胞凋亡和TMZ敏感性
Fig.2 Circ_EPHB4 knockdown inhibits cell clone formation and enhances apoptosis and TMZ sensitivity of TMZ-resistant glioma cells. A: qRT-PCR for detecting circ_EPHB4 expression after transfection with si-circ_EPHB4 (**P<0.01). B: CCK-8 assay for assessing viability of TMZ-resistant glioma cells after transfection with si-circ_EPHB4 and treatment with TMZ for 24 h (*P<0.05, **P<0.01 vs si-NC). C: Clone formation assay of cells after transfection with si-circ_EPHB4. D: Flow cytometry for analyzing cell apoptosis after transfection with si-circ_EPHB4. E: Western blotting for detecting expressions of PCNA, MRP1, Bax and P-gp in cells transfected with si-circ_EPHB4.
图3 TMZ耐药胶质瘤细胞Circ_EPHB4与miR-424-5p的相互作用
Fig.3 Interaction between circ_EPHB4 and miR-424-5p in TMZ-resistant glioma cells. A: Comparison of miR-424-5p expression in different tissues. B: Comparison of miR-424-5p expressions in different cells. C: Correlation analysis of miR-424-5p and circ_EPHB4 expression in glioma tissues. D: Detection of miR-424-5p expression by qRT-PCR after transfection with mimics-miR-424-5p. E: Binding sites of miR-424 and circRNA EPHB4. F: RIP assay for detecting expression levels of circ_EPHB4 and miR-424-5p in A172/TMZ cell lysates. G: RIP assay for detecting expression levels of circ_EPHB4 and miR-424-5p in SHG44/TMZ cell lysates. H: Dual-luciferase assay after co-transfection of mimics-miR-424-5p and circ_EPHB4 wt or circ_EPHB4 mut in 293 T cells. *P<0.05, **P<0.01, ***P<0.001; ##P<0.01 vs HBE.
图4 Circ_EPHB4通过调控miR-424-5p表达促进胶质瘤耐药细胞克隆形成、抑制凋亡和降低TMZ敏感性
Fig.4 Circ_EPHB4 promotes clone formation, inhibits apoptosis and reduces TMZ sensitivity of TMZ-resistant glioma cells by regulating the expression of miR-424-5p. A: qRT-PCR for detecting the expression of miR-424-5p in each group of cells. B: CCK-8 assay for assessing cell viability. C: Clone formation assay of the cells. D: Flow cytometry for analyzing cell apoptosis in each group. E: Western blotting for detect the expression levels of PCNA, P-gp, MRP1 and bax in each group. *P<0.05, **P<0.01.
图5 MiR-424-5p靶向Wnt3的3'UTR
Fig.5 MiR-424-5p targets the 3'UTR of Wnt3. A: Comparison of Wnt3 mRNA expression in primary glioma tissues (sensitive/S), recurrent glioma tissues (resistant/R), and healthy brain tissues (normal/N). B: Comparison of Wnt3 mRNA expression levels in HBE, A172, SHG44, A172/TMZ, and SHG44/TMZ cells (##P<0.01 vs HBE cells). C: Comparison of Wnt3 protein expression levels in primary glioma tissues (sensitive/S), recurrent glioma tissues (resistant/R), and healthy brain tissues (normal/N). D: Comparison of Wnt3 protein expression levels in HBE, A172, SHG44, A172/TMZ, and SHG44/TMZ cells. E: Pearson analysis of the correlation between Wnt3 mRNA and miR-424-5p expression in glioma tissues. F: Schematic diagram of the targeting binding sequence between Wnt3 3'-UTR and miR-424-5p. G: Luciferase assay to verify the targeting binding relationship between Wnt3 and miR-424-5p. **P<0.01, ***P<0.001; ##P<0.01 vs HBE.
图6 Wnt3介导miR-424-5p过表达对替莫唑胺耐药胶质瘤细胞克隆形成、细胞凋亡和替莫唑胺体外敏感性的影响
Fig.6 Effects of Wnt3-mediated miR-424-5p overexpression on clone formation, apoptosis and TMZ sensitivity in TMZ-resistant glioma cells. A172/TMZ and SHG44/TMZ cells were transfected with mimics-NC, mimics-miR-424-5p, mimics-miR-424-5p+OE-NC or mimics-miR-424-5p+OE-Wnt3 for 48 h, and the expression levels of Wnt3 mRNA and protein were detected by qRT-PCR and Western blotting (A-D). E: CCK-8 assay for assessing cell viability. F: Clone formation assay of the cells. G: Flow cytometry for analyzing cell apoptosis. H: Expression levels of PCNA, P-gp, MRP1 and bax in the cells detected by Western blotting. *P<0.05, **P<0.01, ***P<0.001.
图7 Circ_EPHB4通过"海绵"吸附miR-424-5p调控Wnt3表达
Fig.7 Circ_EPHB4 regulates the expression of Wnt3 by "sponging" miR-424-5p. The expression of Wnt3 mRNA and protein were detected in A172/TMZ and SHG44/TMZ cells after transfection with si-NC, si-circ_EPHB4, si-circ_EPHB4+inhibitos-NC or si-circ_EPHB4+inhibitos-miR-424-5. A: Expression of Wnt3 mRNA in A172/TMZ cells after transfection. B: Expression of Wnt3 protein in A172/TMZ cells after transfection. C: Expression of Wnt3 mRNA in SHG44/TMZ cells after transfection. D: Expression of Wnt3 protein in SHG44/TMZ cells after transfection. **P<0.01, ***P<0.001.
图8 Circ_EPHB4表达敲低抑制肿瘤生长,促进体内TMZ的敏感性
Fig.8 Knockdown of circ_EPHB4 inhibits tumor growth and enhances TMZ sensitivity of the xenografts in nude mice. A172/TMZ cells transfected with si-NC or si-circ_EPHB4 before subcutaneous implantation in the right flank of nude mice (6 mice in each group). When the tumors reached approximately 100 mm³, PBS (NS) or TMZ (5 mg/kg) was injected intravenously through the tail vein every 3 days. A: Growth curve of the xenografts. B: Comparison of tumor weight. C: qRT-PCR detection of circ_EPHB4, miR-424-5p and Wnt3 mRNA expression levels in the tumors; D: Western blotting for detecting Wnt3 protein expression levels in the tumors. E: Western blotting for detecting PCNA, P-gp, MRP1 and bax expression levels in the tumors. *P<0.05, **P<0.01, ***P<0.001.
1 | 张艺馨, 黄海能. 替莫唑胺二联用药方案治疗胶质瘤的研究进展[J]. 癌症进展, 2023, 21(17): 1873-6, 1962. |
2 | Śledzińska P, Bebyn M, Furtak J, et al. Current and promising treatment strategies in glioma[J]. Rev Neurosci, 2022, 34(5): 483-516. |
3 | 朱 君, 朱正春, 秦学金, 等. LncRNA MEG3对脑胶质瘤细胞替莫唑胺获得性耐药的影响[J]. 安徽医科大学学报, 2022, 57(10): 1621-6, 1632. |
4 | Nakagawa-Saito Y, Mitobe Y, Togashi K, et al. Givinostat inhibition of Sp1-dependent MGMT expression sensitizes glioma stem cells to temozolomide[J]. Anticancer Res, 2023, 43(3): 1131-8. |
5 | Kristensen LS, Jakobsen T, Hager H, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nat Rev Clin Oncol, 2022, 19(3): 188-206. |
6 | Pisignano G, Michael DC, Visal TH, et al. Going circular: history, present, and future of circRNAs in cancer[J]. Oncogene, 2023, 42(38): 2783-800. |
7 | Deng YY, Zhu HW, Xiao L, et al. Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis[J]. Aging, 2020, 13(2): 2198-211. |
8 | Jin C, Zhao J, Zhang ZP, et al. CircRNA EPHB4 modulates stem properties and proliferation of gliomas via sponging miR-637 and up-regulating SOX10[J]. Mol Oncol, 2021, 15(2): 596-622. |
9 | Guo X, Jiao HX, Cao LL, et al. Biological implications and clinical potential of invasion and migration related miRNAs in glioma[J]. Front Integr Neurosci, 2022, 16: 989029. |
10 | Aili Y, Maimaitiming N, Mahemuti Y, et al. The role of exosomal miRNAs in glioma: biological function and clinical application[J]. Front Oncol, 2021, 11: 686369. |
11 | Han YJ, Li XX, He F, et al. Knockdown of lncRNA PVT1 inhibits glioma progression by regulating miR-424 expression[J]. Oncol Res, 2019, 27(6): 681-90. |
12 | 马 瑶, 李春雨. 塞来昔布抗肿瘤效应及其作用机制的研究进展[J]. 现代药物与临床, 2022, 37(5): 1144-9. |
13 | Wei J, Liu Z, He J, et al. Traditional Chinese medicine reverses cancer multidrug resistance and its mechanism[J]. Clin Transl Oncol, 2022, 24(3): 471-82. |
14 | Zhao CB, Gao YY, Guo RM, et al. Microarray expression profiles and bioinformatics analysis of mRNAs, lncRNAs, and circRNAs in the secondary temozolomide-resistant glioblastoma[J]. Invest New Drugs, 2020, 38(5): 1227-35. |
15 | Mafi A, Hedayati N, Kahkesh S, et al. The landscape of circRNAs in gliomas temozolomide resistance: Insights into molecular pathways[J]. Noncoding RNA Res, 2024, 9(4): 1178-89. |
16 | Lan P, Li MH, Wang Y, et al. Y-box protein-1 modulates circSPECC1 to promote glioma tumorigenesis via miR-615-5p/HIP1/AKT axis[J]. Acta Biochim Biophys Sin, 2023, 55(12): 1902-12. |
17 | Chieffi P, Nasti M, Fulgione D, et al. Expression of PCNA in the testis of the lizard, Podarcis s. Sicula: an endogenous molecular marker of mitotic germinal epithelium proliferation[J]. Zygote, 2001, 9(4): 317-22. |
18 | Miura C, Miura T, Yamashita M. PCNA protein expression during spermatogenesis of the Japanese eel (Anguilla japonica)[J]. Zoolog Sci, 2002, 19(1): 87-91. |
19 | Wu CJ, Wangpaichitr M, Feun L, et al. Overcoming cisplatin resistance by mTOR inhibitor in lung cancer[J]. Mol Cancer, 2005, 4(1): 25. |
20 | Wang Y, Serfass L, Roy MO, et al. Annexin-I expression modulates drug resistance in tumor cells[J]. Biochem Biophys Res Commun, 2004, 314(2): 565-70. |
21 | Lu YY, Deng XB, Xiao GH, et al. circ_0001730 promotes proliferation and invasion via the miR-326/Wnt7B axis in glioma cells[J]. Epigenomics, 2019, 11(11): 1335-52. |
22 | Richardsen E, Andersen S, Al-Saad S, et al. Low expression of miR-424-3p is highly correlated with clinical failure in prostate cancer[J]. Sci Rep, 2019, 9: 10662. |
23 | Zhang Y, Li T, Guo PB, et al. miR-424-5p reversed epithelial-mesenchymal transition of anchorage-independent HCC cells by directly targeting ICAT and suppressed HCC progression[J]. Sci Rep, 2014, 4: 6248. |
24 | Jiang BH, Wu DH, Huang L, et al. miR-424-5p inhibited malignant behavior of colorectal cancer cells by targeting CCNE1[J]. Panminerva Med, 2019. |
25 | Chen Y, Li SH, Wei YB, et al. Circ-RNF13, as an oncogene, regulates malignant progression of HBV-associated hepatocellular carcinoma cells and HBV expression and replication through circ-RNF13/miR-424-5p/TGIF2 CeRNA pathway[J]. Bosn J Basic Med Sci, 2021, 21(5): 555-68. |
26 | Ferrer-Mayorga G, Niell N, Cantero R, et al. Vitamin D and Wnt3A have additive and partially overlapping modulatory effects on gene expression and phenotype in human colon fibroblasts[J]. Sci Rep, 2019, 9(1): 8085. |
27 | Eterno V, Zambelli A, Villani L, et al. AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128[J]. Sci Rep, 2016, 6: 28436. |
28 | Nagy Á, Tompa M, Krabóth Z, et al. Wnt pathway markers in low-grade and high-grade gliomas[J]. Ideggyogy Sz, 2021, 74(9/10): 349-55. |
29 | Xu AQ, Yang HP, Gao KJ, et al. Expression profiles and prognostic significance of WNT family members in glioma via bioinformatic analysis[J]. Biosci Rep, 2020, 40(3): BSR20194255. |
30 | Xue WT, Cai LH, Li S, et al. WNT ligands in non-small cell lung cancer: from pathogenesis to clinical practice[J]. Discov Oncol, 2023, 14(1): 136. |
31 | Wang JL, Yang QP, Tang MJ, et al. Validation and analysis of expression, prognosis and immune infiltration of WNT gene family in non-small cell lung cancer[J]. Front Oncol, 2022, 12: 911316. |
32 | Lu F, Ye Y, Zhang H, et al. miR-497/Wnt3a/c-Jun feedback loop regulates growth and epithelial-to-mesenchymal transition phenotype in glioma cells[J]. Int J Biol Macromol, 2018, 120(pt a): 985-91. |
[1] | 吴垂杏, 钟伟雄, 谢金城, 杨蕊梦, 吴元魁, 许乙凯, 王琳婧, 甄鑫. 基于序列缺失的MRI多序列特征填补与融合互助模型:鉴别高低级别胶质瘤[J]. 南方医科大学学报, 2024, 44(8): 1561-1570. |
[2] | 黄秋虎, 周 建, 王子珍, 杨 堃, 陈政纲. miR-26b-3p 靶向 CREB1 调控神经胶质瘤细胞的增殖、迁移及侵袭[J]. 南方医科大学学报, 2024, 44(3): 578-584. |
[3] | 黄晓茵, 陈凤莲, 张煜, 梁淑君. 多参数多区域MRI影像组学特征与临床信息联合模型可有效预测脑胶质瘤患者生存期[J]. 南方医科大学学报, 2024, 44(10): 2004-2014. |
[4] | 张振阳, 谢金城, 钟伟雄, 梁芳蓉, 杨蕊梦, 甄 鑫. 基于距匹配及判别表征学习的多模态特征融合分类模型研究:高级别胶质瘤与单发性脑转移瘤的鉴别诊断[J]. 南方医科大学学报, 2024, 44(1): 138-145. |
[5] | 于正涛, 李佳梦, 蒋俊文, 李 由, 林 珑, 夏 鹰, 王 磊. miRNA-128-3p通过下调KLHDC8A的表达抑制胶质瘤细胞的恶性生物学行为[J]. 南方医科大学学报, 2023, 43(9): 1447-1459. |
[6] | 楚智钦, 屈耀铭, 钟 涛, 梁淑君, 温志波, 张 煜. 磁共振酰胺质子转移模态的胶质瘤IDH基因分型识别:基于深度学习的Dual-Aware框架[J]. 南方医科大学学报, 2023, 43(8): 1379-1387. |
[7] | 叶静静, 徐文琴, 奚邦生, 王能乾, 陈天兵. 乳酸诱导PLEKHA4的上调参与胶质瘤细胞增殖和凋亡的生物学进程[J]. 南方医科大学学报, 2023, 43(7): 1071-1080. |
[8] | 卢明君, 屈耀铭, 马安东, 朱建彬, 邹 霞, 林耕耘, 李榆欣, 刘昕孜, 温志波. 多模态MRI影像组学可预测弥漫性较低级别胶质瘤的1p/19q共缺失状态[J]. 南方医科大学学报, 2023, 43(6): 1023-1028. |
[9] | 徐文琴, 叶静静, 王 飞, 陈天兵. 吡罗克酮乙醇胺盐通过PI3K/AKT通路破坏胶质瘤细胞的线粒体动力学[J]. 南方医科大学学报, 2023, 43(5): 764-771. |
[10] | 孙江川, 邢家恒, 谭茹雪, 钱 颖, 田 男. 莪术醇逆转胶质瘤细胞对替莫唑胺的耐药:基于调节UTX/MGMT轴[J]. 南方医科大学学报, 2023, 43(10): 1697-1705. |
[11] | 崔 颖, 范顺志, 潘迪迪, 巢 青. 阿托伐他汀抑制脑胶质瘤细胞的增殖和促进凋亡:基于上调miR-146a表达与抑制PI3K/Akt信号通路[J]. 南方医科大学学报, 2022, 42(6): 899-904. |
[12] | 杨学智, 沈 红, 李 群, 代自超, 杨荣强, 黄国宾, 陈 蕊, 王 芳, 宋精玲, 华海蓉. 干扰肿瘤相关巨噬细胞的P2X4受体表达可抑制胶质瘤细胞的迁移和侵袭[J]. 南方医科大学学报, 2022, 42(5): 658-664. |
[13] | 赵炜疆, 林佳哲. 神经调节蛋白2高表达于不同级别胶质瘤组织并通过Akt信号调控胶质瘤细胞GFAP表达[J]. 南方医科大学学报, 2021, 41(8): 1171-1176. |
[14] | 赵梓丹, 黄 为, 和君建, 冯 超. miR-424通过调控ATG14的表达抑制肝癌细胞的自噬和增殖[J]. 南方医科大学学报, 2021, 41(7): 1012-1021. |
[15] | 罗奇志, 张 帆, 李 威, 王 芳, 邬力祥, 黄柏胜. LncRNA MEG3通过抑制HIF1α的表达降低胶质瘤U251细胞的增殖与侵袭能力[J]. 南方医科大学学报, 2021, 41(1): 141-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||