南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (10): 2004-2014.doi: 10.12122/j.issn.1673-4254.2024.10.19

• • 上一篇    

多参数多区域MRI影像组学特征与临床信息联合模型可有效预测脑胶质瘤患者生存期

黄晓茵1(), 陈凤莲1, 张煜1,2,3(), 梁淑君1,2,3()   

  1. 1.南方医科大学生物医学工程学院
    2.广东省医学图像处理重点实验室
    3.广东省医学成像与诊断技术工程实验室,广东 广州 510515
  • 收稿日期:2024-05-28 出版日期:2024-10-20 发布日期:2024-10-31
  • 通讯作者: 张煜,梁淑君 E-mail:huangxiaoyin2003@163.com;yuzhang@smu.edu.cn;lsj123@smu.edu.cn
  • 作者简介:黄晓茵,在读本科生,E-mail: huangxiaoyin2003@163.com
  • 基金资助:
    国家自然科学基金(62001206);广州市科技计划项目(2023A04J2262)

A predictive model for survival outcomes of glioma patients based on multi-parametric, multi-regional MRI radiomics features and clinical features

Xiaoyin HUANG1(), Fenglian CHEN1, Yu ZHANG1,2,3(), Shujun LIANG1,2,3()   

  1. 1.School of Biomedical Engineering, Southern Medical University
    2.Guangdong Provincial Key Laboratory of Medical Image Processing
    3.Guangdong Provincial Engineering Laboratory for Medical Imaging and Diagnostic Technology, Guangzhou 510515, China
  • Received:2024-05-28 Online:2024-10-20 Published:2024-10-31
  • Contact: Yu ZHANG, Shujun LIANG E-mail:huangxiaoyin2003@163.com;yuzhang@smu.edu.cn;lsj123@smu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62001206)

摘要:

目的 探讨脑胶质瘤患者肿瘤亚区影像组学特征,评估其对患者生存期的预后价值。 方法 对388例胶质瘤患者的术前MRI多序列影像和临床数据进行回顾性分析,从瘤周水肿区域、肿瘤核心区以及全肿瘤区域提取T1、T2、T1加权对比增强(T1CE)、液体衰减反转恢复(FLAIR)序列的影像组学特征。将病例按照7∶3分为训练集(271例)和测试集(117例)。利用随机生存森林算法在训练集中筛选与总生存期相关的影像组学特征,并构建影像组学评分(Rad-score)。根据Rad-score将患者分为高、低风险组,使用Kaplan-Meier分析两组生存差异。建立瘤周水肿区、肿瘤核心区和全肿瘤区域的Cox比例风险回归模型,并通过五折交叉验证及受试者工作特征曲线下面积评估模型1年、3年生存率的预测效能,采用10例胶质瘤患者作外部验证。选择表现最优的模型进行生存期预测情况的列线图分析。 结果 肿瘤核心区、瘤周水肿区和全肿瘤区域分别筛选出的影像组学特征数量分别为5、7、5,根据Rad-score,两风险组在训练集和测试集的总生存期存在差异(P<0.05)。单因素和多因素Cox分析显示,年龄、异柠檬酸脱氢酶状态和Rad-score是总生存期的独立影响因素。联合模型在训练集和测试集中的AUC表现优于单一Rad-score模型,其中全肿瘤模型的1年、3年生存率预测AUC分别为0.750、0.778(训练集),0.764、0.800(测试集)和0.938、0.917(外部验证集)。 结论 基于术前多模态MRI影像组学特征与临床信息联合构建的预测模型能有效预测胶质瘤患者的生存期。

关键词: 胶质瘤, 影像组学, 磁共振成像, 机器学习, 预后分析

Abstract:

Objective To establish a predictive model for survival outcomes of glioma patients based on both brain radiomics features from preoperative MRI multi-sequence images and clinical features. Methods We retrospectively analyzed the MRI images and clinical data of 388 glioma patients and extracted the radiomics features from the peritumoral edema zone, tumor core, and whole tumor on T1, T2, and T1-weighted contrast-enhanced (T1CE) and fluid attenuated inversion recovery (FLAIR) sequences. The cases were divided into a training set (271 cases) and a test set (117 cases). Random survival forest algorithms were used to select the radiomics features associated with overall survival (OS) in the training set to construct a radiomic score (Rad-score), based on which the patients were classified into high- and low-risk groups for Kaplan-Meier survival analysis. Cox proportional hazard regression models for the 3 different tumor zones were constructed, and their performance for predicting 1- and 3-year survival rates was evaluated using 5-fold cross-validation and AUC analysis followed by external validation using data from another 10 glioma patients. The best-performing model was used for constructing a nomogram for survival predictions. Results Five radiomics features from the tumor core, 7 from the peritumoral edema zone, and 5 from the whole tumor were selected. In both the training and test sets, the high- and low-risk groups had significantly different OS (P<0.05), and age, IDH status and Rad-score were independent factors affecting OS. The combined model showed better performance than the Rad-score model with AUCs for 1-year and 3-year survival prediction of 0.750 and 0.778 in the training set, 0.764 and 0.800 in the test set, and 0.938 and 0.917 in external validation, respectively. Conclusion The predictive model combining preoperative multi-modal MRI radiomics features and clinical features can effectively predict survival outcomes of glioma patients.

Key words: glioma, radiomics, magnetic resonance imaging, machine learning, prognostic analysis