1 |
Alivernini S, Firestein GS, McInnes IB. The pathogenesis of rheumatoid arthritis[J]. Immunity, 2022, 55(12): 2255-70.
|
2 |
Xu Q, Ni JJ, Han BX, et al. Causal relationship between gut microbiota and autoimmune diseases: a two-sample Mendelian randomization study[J]. Front Immunol, 2021, 12: 746998.
|
3 |
Kronzer VL, Davis JM. Etiologies of rheumatoid arthritis: update on mucosal, genetic, and cellular pathogenesis[J]. Curr Rheumatol Rep, 2021, 23(4): 21.
|
4 |
Chiang PH, Ju PC, Chiang YC, et al. Correspondence on ‘Incidence trend of five common musculoskeletal disorders from 1990 to 2017 at the global, regional and national level: results from the global burden of disease study 2017'[J]. Ann Rheum Dis, 2023, 82(2): e46.
|
5 |
Guan SY, Zheng JX, Sam NB, et al. Global burden and risk factors of musculoskeletal disorders among adolescents and young adults in 204 countries and territories, 1990-2019[J]. Autoimmun Rev, 2023, 22(8): 103361.
|
6 |
Lenti MV, Rossi CM, Melazzini F, et al. Seronegative autoimmune diseases: a challenging diagnosis[J]. Autoimmun Rev, 2022, 21(9): 103143.
|
7 |
Tidblad L, Westerlind H, Delcoigne B, et al. Comorbidities and treatment patterns in early rheumatoid arthritis: a nationwide Swedish study[J]. RMD Open, 2022, 8(2): e002700.
|
8 |
Ben Mrid R, Bouchmaa N, Ainani H, et al. Anti-rheumatoid drugs advancements: new insights into the molecular treatment of rheumatoid arthritis[J]. Biomed Pharmacother, 2022, 151: 113126.
|
9 |
Tan Y, Buch MH. 'Difficult to treat' rheumatoid arthritis: current position and considerations for next steps[J]. RMD Open, 2022, 8(2): e002387.
|
10 |
Clough E, Barrett T. The gene expression omnibus database[J]. Methods Mol Biol, 2016, 1418: 93-110.
|
11 |
Zhao T, Xie Z, Xi Y, et al. How to model rheumatoid arthritis in animals: from rodents to non-human Primates[J]. Front Immunol, 2022, 13: 887460.
|
12 |
Zhang X, Zhang X, Wang X, et al. Efficient delivery of triptolide plus a miR-30-5p inhibitor through the use of near infrared laser responsive or CADY modified MSNs for efficacy in rheumatoid arthritis therapeutics[J]. Front Bioeng Biotechnol, 2020, 8: 170.
|
13 |
Rincón-Riveros A, Morales D, Rodríguez JA, et al. Bioinformatic tools for the analysis and prediction of ncRNA interactions[J]. Int J Mol Sci, 2021, 22(21): 11397.
|
14 |
Jang S, Kwon EJ, Lee JJ. Rheumatoid arthritis: pathogenic roles of diverse immune cells[J]. Int J Mol Sci, 2022, 23(2): 905.
|
15 |
Yu R, Zhang J, Zhuo Y, et al. Identification of diagnostic signatures and immune cell infiltration characteristics in rheumatoid arthritis by integrating bioinformatic analysis and machine-learning strategies[J]. Front Immunol, 2021, 12: 724934.
|
16 |
Cheng Q, Chen X, Wu H, et al. Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis[J]. J Transl Med, 2021, 19(1): 18.
|
17 |
Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis[J]. Immunity, 2017, 46(2): 183-96.
|
18 |
Wu D, Luo Y, Li T, et al. Systemic complications of rheumatoid arthritis: focus on pathogenesis and treatment[J]. Front Immunol, 2022, 13: 1051082.
|
19 |
Matsumoto H, Fujita Y, Onizawa M, et al. Increased CEACAM1 expression on peripheral blood neutrophils in patients with rheumatoid arthritis[J]. Front Immunol, 2022, 13: 978435.
|
20 |
Li Z, Xu M, Li R, et al. Identification of biomarkers associated with synovitis in rheumatoid arthritis by bioinformatics analyses[J]. Biosci Rep, 2020, 40(9): BSR20201713.
|
21 |
Zhou S, Lu H, Xiong M. Identifying immune cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by bioinformatics analysis[J]. Front Immunol, 2021, 12: 726747.
|
22 |
Vantourout P, Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology[J]. Nat Rev Immunol, 2013, 13: 88-100.
|
23 |
Hayday AC. γδ T cell update: adaptate orchestrators of immune surveillance[J]. J Immunol, 2019, 203(2): 311-20.
|
24 |
Mo WX, Yin SS, Chen H, et al. Chemotaxis of Vδ2 T cells to the joints contributes to the pathogenesis of rheumatoid arthritis[J]. Ann Rheum Dis, 2017, 76(12): 2075-84.
|
25 |
Jacobs MR, Haynes BF. Increase in TCR gamma delta T lymphocytes in synovia from rheumatoid arthritis patients with active synovitis[J]. J Clin Immunol, 1992, 12(2): 130-8.
|
26 |
Pascual-García S, Martínez-Peinado P, López-Jaén AB, et al. Analysis of novel immunological biomarkers related to rheumatoid arthritis disease severity[J]. Int J Mol Sci, 2023, 24(15): 12351.
|
27 |
Lu J, Wu J, Xia XL, et al. Follicular helper T cells: potential therapeutic targets in rheumatoid arthritis[J]. Cell Mol Life Sci, 2021, 78(12): 5095-106.
|
28 |
Zhao S, Wang Y, Liang Y, et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1[J]. Arthritis Rheum, 2011, 63(5): 1376-86.
|
29 |
Cutolo M, Campitiello R, Gotelli E, et al. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis[J]. Front Immunol, 2022, 13: 867260.
|
30 |
Tardito S, Martinelli G, Soldano S, et al. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review[J]. Autoimmun Rev, 2019, 18(11): 102397.
|
31 |
Ye Q, Luo F, Yan T. Transcription factor KLF4 regulated STAT1 to promote M1 polarization of macrophages in rheumatoid arthritis[J]. Aging: Albany NY, 2022, 14(14): 5669-80.
|
32 |
Guo DG, Lv JH, Chen X, et al. Study of miRNA interactome in active rheumatoid arthritis patients reveals key pathogenic roles of dysbiosis in the infection-immune network[J]. Rheumatology: Oxford, 2021, 60(3): 1512-22.
|
33 |
Zaiss MM, Wu HJ J, Mauro D, et al. The gut-joint axis in rheumatoid arthritis[J]. Nat Rev Rheumatol, 2021, 17: 224-37.
|
34 |
Kondo N, Kuroda T, Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis[J]. Int J Mol Sci, 2021, 22(20): 10922.
|
35 |
Simon LS, Taylor PC, Choy EH, et al. The Jak/STAT pathway: a focus on pain in rheumatoid arthritis[J]. Semin Arthritis Rheum, 2021, 51(1): 278-84.
|
36 |
Banerjee S, Biehl A, Gadina M, et al. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects[J]. Drugs, 2017, 77(5): 521-46.
|
37 |
Hu L, Liu RJ, Zhang LL. Advance in bone destruction participated by JAK/STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors[J]. Int Immunopharmacol, 2022, 111: 109095.
|
38 |
Karonitsch T, Saferding V, Kieler M, et al. Amino acids fueling fibroblast-like synoviocyte activation and arthritis by regulating chemokine expression and leukocyte migration[J]. Arthritis Rheumatol, 2024, 76(4): 531-40.
|
39 |
Mai YP, Yu XT, Gao T, et al. Autoantigenic peptide and immunomodulator codelivery system for rheumatoid arthritis treatment by reestablishing immune tolerance[J]. ACS Appl Mater Interfaces, 2024: Online ahead of print.
|