1 |
GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet Neurol, 2024, 23(4): 344-81.
|
2 |
Ashina M, Katsarava Z, Do TP, et al. Migraine: epidemiology and systems of care[J]. Lancet, 2021, 397(10283): 1485-95.
|
3 |
Steiner TJ, Stovner LJ. Global epidemiology of migraine and its implications for public health and health policy[J]. Nat Rev Neurol, 2023, 19(2): 109-17.
|
4 |
Andreou AP, Edvinsson L. Mechanisms of migraine as a chronic evolutive condition[J]. J Headache Pain, 2019, 20(1): 117.
|
5 |
May A, Schulte LH. Chronic migraine: risk factors, mechanisms and treatment[J]. Nat Rev Neurol, 2016, 12(8): 455-64.
|
6 |
Hovaguimian A, Roth J. Management of chronic migraine[J]. BMJ, 2022, 379: e067670.
|
7 |
Boyer N, Dallel R, Artola A, et al. General trigeminospinal central sensitization and impaired descending pain inhibitory controls contribute to migraine progression[J]. Pain, 2014, 155(7): 1196-205.
|
8 |
Volcheck MM, Graham SM, Fleming KC, et al. Central sensitization, chronic pain, and other symptoms: Better understanding, better management[J]. Cleve Clin J Med, 2023, 90(4): 245-54.
|
9 |
Thuraiaiyah J, Erritzøe-Jervild M, Al-Khazali HM, et al. The role of cytokines in migraine: a systematic review[J]. Cephalalgia, 2022, 42(14): 1565-88.
|
10 |
Kursun O, Yemisci M, van den Maagdenberg AMJM, et al. Migraine and neuroinflammation: the inflammasome perspective[J]. J Headache Pain, 2021, 22(1): 55.
|
11 |
Inoue K, Tsuda M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential[J]. Nat Rev Neurosci, 2018, 19(3): 138-52.
|
12 |
Liu L, Xu YT, Dai HM, et al. Dynorphin activation of kappa opioid receptor promotes microglial polarization toward M2 phenotype via TLR4/NF-κB pathway[J]. Cell Biosci, 2020, 10(1): 42.
|
13 |
Lu GS, Xiao SB, Meng FC, et al. AMPK activation attenuates central sensitization in a recurrent nitroglycerin-induced chronic migraine mouse model by promoting microglial M2-type polarization[J]. J Headache Pain, 2024, 25(1): 29.
|
14 |
Luo L, Liu M, Fan Y, et al. Intermittent Theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 sig-naling pathway in cerebral ischemic mice[J]. J Neuroinflammation, 2022, 19(1): 141.
|
15 |
Liu Q, Yan R, Wang L, et al. Alpha-asarone alleviates cutaneous hyperalgesia by inhibiting hyperexcitability and neurogenic inflammation via TLR4/NF‑κB/NLRP3 signaling pathway in a female chronic migraine rat model[J]. Neuropharmacology, 2024, 261: 110158.
|
16 |
Erdener ŞE, Kaya Z, Dalkara T. Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine[J]. J Headache Pain, 2021, 22(1): 138.
|
17 |
Chen H, Tang X, Li J, et al. IL-17 crosses the blood-brain barrier to trigger neuroinflammation: a novel mechanism in nitroglycerin-induced chronic migraine[J]. J Headache Pain, 2022, 23(1): 1.
|
18 |
Pijpers JA, Kies DA, van Zwet EW, et al. Cutaneous allodynia as predictor for treatment response in chronic migraine: a cohort study[J]. J Headache Pain, 2023, 24(1): 118.
|
19 |
龙亚秋, 何文星, 李 华, 等. 陈宝田治疗头痛经验总结[J]. 中国中医基础医学杂志, 2016, 22(2): 213, 226. DOI: 10.3969/j.issn.2095-7246.2016.01.009
|
20 |
谢 炜, 洪 雨, 范穗强, 等. 偏头痛分型论治多中心临床观察及疗效分析[J]. 热带医学杂志, 2012, 12(3): 274-8.
|
21 |
梁雯琳, 谢 炜, 洪 雨, 等. 活血疏风颗粒对偏头痛模型大鼠血浆SP、CGRP和脑干5-HT含量的影响[J]. 时珍国医国药, 2016, 27(12): 2882-4.
|
22 |
Zhang W, Zhang Y, Wang H, et al. Animal models of chronic migraine: from the bench to therapy[J]. Curr Pain Headache Rep, 2024, 28(11): 1123-33.
|
23 |
Al-Hassany L, Goadsby PJ, Danser AHJ, et al. Calcitonin gene-related peptide-targeting drugs for migraine: how pharmacology might inform treatment decisions[J]. Lancet Neurol, 2022, 21(3): 284-94.
|
24 |
Chou TM, Lee ZF, Wang SJ, et al. CGRP-dependent sensitization of PKC‑δ positive neurons in central amygdala mediates chronic migraine[J]. J Headache Pain, 2022, 23(1): 157.
|
25 |
Wu S, Ren X, Ren X, et al. A c-Fos activation map in nitroglycerin/levcromakalim-induced models of migraine[J]. J Headache Pain, 2022, 23(1): 128.
|
26 |
Ho TW, Edvinsson L, Goadsby PJ. CGRP and its receptors provide new insights into migraine pathophysiology[J]. Nat Rev Neurol, 2010, 6(10): 573-82.
|
27 |
Xiao SB, Lu GS, Liu JY, et al. Brain-wide mapping of c-Fos expression in nitroglycerin-induced models of migraine[J]. J Headache Pain, 2024, 25(1): 136.
|
28 |
Ferrari MD, Goadsby PJ, Burstein R, et al. Migraine[J]. Nat Rev Dis Primers, 2022, 8(1): 2.
|
29 |
Chen J, Cai Y, Wei D, et al. Formononetin inhibits neuroinflammation in BV2 microglia induced by glucose and oxygen deprivation reperfusion through TLR4/NF‑κB signaling pathway[J]. Brain Res, 2024, 1845: 149218.
|
30 |
Zhang LL, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony[J]. Pharmacol Ther, 2020, 207: 107452.
|
31 |
Foudah AI, Devi S, Alqarni MH, et al. Quercetin attenuates nitroglycerin-induced migraine headaches by inhibiting oxidative stress and inflammatory mediators[J]. Nutrients, 2022, 14(22): 4871.
|