南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (7): 1423-1433.doi: 10.12122/j.issn.1673-4254.2025.07.08
朱胤福1(), 李怡燃1, 王奕1, 黄颖而2, 龚昆翔3, 郝文波1(
), 孙玲玲4(
)
收稿日期:
2025-03-13
出版日期:
2025-07-20
发布日期:
2025-07-17
通讯作者:
郝文波,孙玲玲
E-mail:1227643411@qq.com;haowa@126.com;sunlingling813@163.com
作者简介:
朱胤福,在读硕士研究生,E-mail: 1227643411@qq.com
基金资助:
Yinfu ZHU1(), Yiran LI1, Yi WANG1, Yinger HUANG2, Kunxiang GONG3, Wenbo HAO1(
), Lingling SUN4(
)
Received:
2025-03-13
Online:
2025-07-20
Published:
2025-07-17
Contact:
Wenbo HAO, Lingling SUN
E-mail:1227643411@qq.com;haowa@126.com;sunlingling813@163.com
Supported by:
摘要:
目的 基于网络药理学分析桂枝茯苓丸有效成分治疗宫颈癌的潜在作用机制,进一步通过实验手段对其抗肿瘤作用进行验证。 方法 利用TCMSP、Genecards、OMIM、TTD、Swiss Target Prediction等数据库,获得桂枝茯苓丸的作用靶点和宫颈癌发病相关的靶点。构建靶点蛋白质相互作用网络,进行GO生物学过程与KEGG通路富集分析,使用Cytoscape v10.0.0构建桂枝茯苓丸治疗宫颈癌的“中药-有效成分-靶点-通路”网络。利用CB-Dock2软件对药物和潜在作用靶点进行分子对接,预测桂枝茯苓丸有效成分的具体作用靶点。在实验验证部分,采用CCK-8、Western blotting实验体外验证桂枝茯苓丸有效成分的抗肿瘤活性。动物实验中,使用12只雌性BALB/c裸鼠构建裸鼠皮下种植瘤模型并将其分为2组(DMSO组及用药组,6只/组),用于评估药物体内抗肿瘤活性,并行组织切片苏木精-伊红与免疫组织化学染色进一步评估药物体内使用安全性与有效性。 结果 分析显示,桂枝茯苓丸共有338个活性成分,涉及247个作用靶点。宫颈癌发病相关的靶点共10127个,通过取交集获得桂枝茯苓丸有效成分治疗宫颈癌的潜在作用靶点195个。基于节点度分析筛选出关键靶点为GABRA1、PTK2、JAK2、HTR3A、GSR和IL-17,并将它们与桂枝茯苓丸的关键前10名活性成分进行后续的分子对接。分子对接结果显示常春藤皂苷元,菜油甾醇,豆甾醇等成分与关键靶点具有较低的结合能。基因本体富集分析显示,桂枝茯苓丸有效成分在治疗宫颈癌主要集中在对类固醇激素,氧化应激,脂多糖等生物学过程。常春藤皂苷元在体外和体内都能够表现出抗肿瘤活性,细胞生长受到抑制(P<0.05),同时STAT3磷酸化水平降低(P<0.05)。动物实验提示,裸鼠皮下瘤体积生长速度更慢(P<0.05),且常春藤皂苷元的体内使用具有一定的安全性。 结论 桂枝茯苓丸中的多种有效活性成分可通过多个途径抑制宫颈癌细胞的生长,从而发挥抗肿瘤作用。其中,常春藤皂苷元可能通过与JAK2蛋白紧密结合,抑制STAT3磷酸化,进而显著发挥其抗肿瘤活性。
朱胤福, 李怡燃, 王奕, 黄颖而, 龚昆翔, 郝文波, 孙玲玲. 桂枝茯苓丸活性成分常春藤皂苷元通过抑制JAK2/STAT3通路抑制宫颈癌细胞的生长[J]. 南方医科大学学报, 2025, 45(7): 1423-1433.
Yinfu ZHU, Yiran LI, Yi WANG, Yinger HUANG, Kunxiang GONG, Wenbo HAO, Lingling SUN. Therapeutic mechanism of hederagenin, an active component in Guizhi Fuling Pellets, against cervical cancer in nude mice[J]. Journal of Southern Medical University, 2025, 45(7): 1423-1433.
图1 "中药-活性成分-靶点"网络的构建
Fig.1 Construction of the "Traditional Chinese Medicine-Active Ingredients-Targets" Network. A:Venn diagram of the drug targets and cervical cancer targets. B: Traditional Chinese medicine-active ingredient-target network of Guizhi Fuling Pellets against cervical cancer.
Name | Betweenness centrality | Closeness centrality | Degree | Eccentricity | Neighborhood connectivity | Number of undirected edges | Type |
---|---|---|---|---|---|---|---|
Quercetin | 0.12874832 | 0.465960666 | 44 | 4 | 32.38636364 | 44 | ingredient |
Beta-sitosterol | 0.042529052 | 0.447024673 | 26 | 4 | 60.03846154 | 26 | ingredient |
Kaempferol | 0.054556646 | 0.450951684 | 31 | 4 | 50.90322581 | 31 | ingredient |
(+)-Catechin | 0.01968019 | 0.426002766 | 15 | 5 | 94.73333333 | 15 | ingredient |
Hederagenin | 0.108300219 | 0.443165468 | 17 | 5 | 59.58823529 | 17 | ingredient |
Stigmasterol | 0.011819554 | 0.421340629 | 16 | 5 | 62.625 | 16 | ingredient |
Sitosterol | 0.011819554 | 0.421340629 | 16 | 5 | 62.625 | 16 | ingredient |
Luteolin | 0.041269784 | 0.42837274 | 22 | 4 | 51.40909091 | 22 | ingredient |
Baicalein | 0.022662695 | 0.422496571 | 18 | 4 | 76.83333333 | 18 | ingredient |
Campesterol | 0.003171002 | 0.417910448 | 10 | 5 | 112.4 | 10 | ingredient |
表1 网络中草药和化合物的拓扑参数
Tab.1 Topology parameters of the herbs and compounds in the network
Name | Betweenness centrality | Closeness centrality | Degree | Eccentricity | Neighborhood connectivity | Number of undirected edges | Type |
---|---|---|---|---|---|---|---|
Quercetin | 0.12874832 | 0.465960666 | 44 | 4 | 32.38636364 | 44 | ingredient |
Beta-sitosterol | 0.042529052 | 0.447024673 | 26 | 4 | 60.03846154 | 26 | ingredient |
Kaempferol | 0.054556646 | 0.450951684 | 31 | 4 | 50.90322581 | 31 | ingredient |
(+)-Catechin | 0.01968019 | 0.426002766 | 15 | 5 | 94.73333333 | 15 | ingredient |
Hederagenin | 0.108300219 | 0.443165468 | 17 | 5 | 59.58823529 | 17 | ingredient |
Stigmasterol | 0.011819554 | 0.421340629 | 16 | 5 | 62.625 | 16 | ingredient |
Sitosterol | 0.011819554 | 0.421340629 | 16 | 5 | 62.625 | 16 | ingredient |
Luteolin | 0.041269784 | 0.42837274 | 22 | 4 | 51.40909091 | 22 | ingredient |
Baicalein | 0.022662695 | 0.422496571 | 18 | 4 | 76.83333333 | 18 | ingredient |
Campesterol | 0.003171002 | 0.417910448 | 10 | 5 | 112.4 | 10 | ingredient |
图2 交集靶点的GO和KEGG富集分析
Fig.2 GO and KEGG enrichment analysis of the intersection targets. A: PPI network constructed and visualized using Cytoscape v10.0.0. Nodes are colored based on the degrees. The degree values range from large to small, following a continuous mapping from yellow to pink. B: Top 10 items for the biological process (BP), cellular component (CC), and molecular function (MF) enrichment analysis in the GO enrichment analysis. The orange section represents the biological processes. The green part represents the cellular component. The blue part represents the molecular function. C: Top 10 items of the KEGG pathway enrichment analysis.
图3 靶蛋白和活性分子对接结果
Fig.3 Molecular docking results of the target proteins and the active molecules. A: Heatmap of the molecular docking fraction showing the binding energy of target proteins and active compounds (kcal/mol). B: Molecular docking model for JAK 2 and hederagenin. C: Molecular docking model for GSR and campesterol. D: Molecular docking model for HTR 3 A and beta-sitosterol.
Sample | GABRA1 | PTK2 | JAK2 | HTR3A | GSR | IL-17 |
---|---|---|---|---|---|---|
(+)-catechin | -8.1 | -6.7 | -8.7 | -8.6 | -8.7 | -9.5 |
Baicalein | -8.1 | -6.9 | -9.4 | -8.8 | -8.7 | -9.2 |
Beta-sitosterol | -4.3 | -8.2 | -9.6 | -10.8 | -10.7 | -10.4 |
Campesterol | -4.6 | -8 | -9.4 | -11.3 | -10.5 | -9.2 |
Hederagenin | -8.6 | -6.9 | -10.7 | -9.4 | -11.1 | -10.2 |
Kaempferol | -7.7 | -7 | -8.8 | -8.5 | -8.9 | -8.8 |
Luteolin | -8.5 | -8.5 | -9 | -9 | -9 | -9.1 |
Sitosterol | -4.3 | -7.6 | -9.4 | -10.2 | -10.8 | -9.4 |
Quercetin | -8.1 | -8.9 | -9.6 | -9.2 | -9.1 | -8.8 |
Stigmasterol | -4.7 | -8.6 | -10.0 | -10.8 | -11 | -9.3 |
Isocorypalmine | -8.0 | -8.2 | -8.2 | -8.9 | -9.7 | -8.7 |
表2 预测的活性成分与靶点的结合能
Tab.2 Binding energy between the predicted active components and targets
Sample | GABRA1 | PTK2 | JAK2 | HTR3A | GSR | IL-17 |
---|---|---|---|---|---|---|
(+)-catechin | -8.1 | -6.7 | -8.7 | -8.6 | -8.7 | -9.5 |
Baicalein | -8.1 | -6.9 | -9.4 | -8.8 | -8.7 | -9.2 |
Beta-sitosterol | -4.3 | -8.2 | -9.6 | -10.8 | -10.7 | -10.4 |
Campesterol | -4.6 | -8 | -9.4 | -11.3 | -10.5 | -9.2 |
Hederagenin | -8.6 | -6.9 | -10.7 | -9.4 | -11.1 | -10.2 |
Kaempferol | -7.7 | -7 | -8.8 | -8.5 | -8.9 | -8.8 |
Luteolin | -8.5 | -8.5 | -9 | -9 | -9 | -9.1 |
Sitosterol | -4.3 | -7.6 | -9.4 | -10.2 | -10.8 | -9.4 |
Quercetin | -8.1 | -8.9 | -9.6 | -9.2 | -9.1 | -8.8 |
Stigmasterol | -4.7 | -8.6 | -10.0 | -10.8 | -11 | -9.3 |
Isocorypalmine | -8.0 | -8.2 | -8.2 | -8.9 | -9.7 | -8.7 |
JAK2-hederagenin | GSR-campesterol | HTR3A-beta-sitosterol | |
---|---|---|---|
Chain A | LYS607 HIS608 GLU652 LYS655 GLN656 TRP659 HIS662 GLU666 PRO692 PHE694 PHE798 ARG799 ALA800 ILE802 ARG803 ASN806 | LYS67 TRP70 ASN71 VAL74 PHE78 PRO376 PRO405 MET406 TYR407 LEU438 GLY439 ASP441 GLU442 PRO468 SER470 | PHE244 VAL247 SER248 LEU249 LEU251 PRO252 PHE255 LEU256 THR279 LEU280 LEU282 GLY283 TYR284 VAL286 PHE287 ILE290 VAL291 ASP293 THR294 |
Chain B | ASP768 ARG769 HIS770 GLN771 LEU772 ASP789 TYR790 GLU791 HIS794 | LEU281 SER285 LEU288 VAL291 SER292 LEU295 PRO296 ALA297 THR298 ALA299 GLY301 THR302 PRO303 GLY306 VAL307 PHE309 VAL310 MET313 ALA314 VAL317 |
表3 药物-靶点结合的活性口袋氨基酸
Tab. 3 Active curpockets of the amino acids
JAK2-hederagenin | GSR-campesterol | HTR3A-beta-sitosterol | |
---|---|---|---|
Chain A | LYS607 HIS608 GLU652 LYS655 GLN656 TRP659 HIS662 GLU666 PRO692 PHE694 PHE798 ARG799 ALA800 ILE802 ARG803 ASN806 | LYS67 TRP70 ASN71 VAL74 PHE78 PRO376 PRO405 MET406 TYR407 LEU438 GLY439 ASP441 GLU442 PRO468 SER470 | PHE244 VAL247 SER248 LEU249 LEU251 PRO252 PHE255 LEU256 THR279 LEU280 LEU282 GLY283 TYR284 VAL286 PHE287 ILE290 VAL291 ASP293 THR294 |
Chain B | ASP768 ARG769 HIS770 GLN771 LEU772 ASP789 TYR790 GLU791 HIS794 | LEU281 SER285 LEU288 VAL291 SER292 LEU295 PRO296 ALA297 THR298 ALA299 GLY301 THR302 PRO303 GLY306 VAL307 PHE309 VAL310 MET313 ALA314 VAL317 |
图4 常春藤皂苷元在体外抑制宫颈癌细胞的生长
Fig. 4 Hederagenin inhibits growth of cervical cancer cells in vitro. A: IC50 curve of hederagenin against U14 cells. B, C: Viability of U14 cells treated with high-concentration (B) and low-concentration (C) hederagenin. D, E: Western blotting and quantitative analysis of STAT3 phosphorylation inhibited by hederagenin treatment for 72 h. *P<0.05, ***P<0.001.
图5 常春藤皂苷元在体内抑制宫颈癌细胞的生长
Fig.5 Hederagenin inhibits growth of cervical cancer xenografts in nude mice. A: Gross observation of the dissected tumors. B: Tumor growth curve during hederagenin treatment. C: HE staining and Ki-67 immunohistochemistry of the tumor sections. D: Weight of the tumors. E: Body weight curve of the nude mice during hederagenin treatment. *P<0.05.
[1] | Fan Q, Huang T, Sun X, et al. miR-130a-3p promotes cell proliferation and invasion by targeting estrogen receptor α and androgen receptor in cervical cancer[J]. Exp Ther Med, 2021, 21(5): 414. doi:10.3892/etm.2021.9858 |
[2] | Ping P, Li J, Xu X. The value of plasma omega-3 polyunsaturated fatty acids in predicting the response and prognosis of cervical squamous cell carcinoma patients to concurrent chemoradiotherapy[J]. Front Pharmacol, 2024, 15: 1379508. doi:10.3389/fphar.2024.1379508 |
[3] | Vogel M, Bachmann MF. Special issue "virus-like particle vaccines"[J]. Viruses, 2020, 12(8): E872. doi:10.3390/v12080872 |
[4] | 曲玉婷, 宋凤丽, 康 宁, 等. 李仝教授用桂枝茯苓丸加减治疗宫颈癌的经验举隅[J]. 内蒙古中医药, 2022, 41(1): 84-5. |
[5] | 张凌霄. 桂枝茯苓汤辅治晚期宫颈癌的临床疗效分析[J]. 中西医结合心血管病电子杂志, 2020, 8(7): 167, 177. |
[6] | 马学琴, 张丽敏, 虎峻瑞.基于网络药理学的桂枝茯苓丸治疗宫颈癌的机制研究[J].临床医学研究与实践, 2021, 6(8): 7-11. doi:10.19347/j.cnki.2096-1413.202108002 |
[7] | Dong Y, Zheng Y, Zhu L, et al. Hua-Tan-Sheng-Jing decoction treats obesity with oligoasthenozoospermia by up-regulating the PI3K-AKT and down-regulating the JNK MAPK signaling pathways: At the crossroad of obesity and oligoasthenozoospermia[J]. Front Pharmacol, 2022, 13: 896434. doi:10.3389/fphar.2022.896434 |
[8] | Sun R, Liu C, Liu J, et al. Integrated network pharmacology and experimental validation to explore the mechanisms underlying naringenin treatment of chronic wounds[J]. Sci Rep, 2023, 13(1): 132. doi:10.1038/s41598-022-26043-y |
[9] | Wang TY, Fahrmann JF, Lee H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(1): 136-50.e5. doi:10.1016/j.cmet.2017.11.001 |
[10] | Pennel KAF, Hatthakarnkul P, Wood CS, et al. JAK/STAT3 represents a therapeutic target for colorectal cancer patients with stromal-rich tumors[J]. J Exp Clin Cancer Res, 2024, 43(1): 64. doi:10.1186/s13046-024-02958-4 |
[11] | Han Y, Zhang Y, Tian Y, et al. The interaction of the IFNγ/JAK/STAT1 and JAK/STAT3 signalling pathways in EGFR-mutated lung adenocarcinoma cells[J]. J Oncol, 2022, 2022: 9016296. doi:10.1155/2022/9016296 |
[12] | Wang L, Wang F, Fu S, et al. Analysis of genetic variation in human papillomavirus type 16 E1 and E2 in women with cervical infection in Xinjiang, China[J]. BMC Med Genomics, 2021, 14(1): 268. doi:10.1186/s12920-021-01120-9 |
[13] | Yu L, Xia Q, Sun Z, et al. Efficacy of acupoint application on in vitro fertilization outcome in patients with polycystic ovary syndrome: a UHPLC-MS-based metabolomic study[J]. Evid Based Com-plement Alternat Med, 2022: 9568417. doi:10.1155/2022/9568417 |
[14] | Liu XY, Chen LL, Sun P, et al. Guizhi Fuling Formulation: a review on chemical constituents, quality control, pharmacokinetic studies, pharmacological properties, adverse reactions and clinical applic-ations[J]. J Ethnopharmacol, 2024, 319: 117277. doi:10.1016/j.jep.2023.117277 |
[15] | Jia Y, Li Y, Du N, et al. LIMK1 promotes the development of cervical cancer by up-regulating the ROS/Src-FAK/cofilin signaling pathway[J]. Aging: Albany NY, 2024, 16(13): 11090-102. doi:10.18632/aging.206007 |
[16] | Du Q, Liu P, Zhang C, et al. FASN promotes lymph node metastasis in cervical cancer via cholesterol reprogramming and lymphangio-genesis[J]. Cell Death Dis, 2022, 13(5): 488. doi:10.1038/s41419-022-04926-2 |
[17] | Imran M, Ghorat F, Ul-Haq I, et al. Lycopene as a natural antioxidant used to prevent human health disorders[J]. Antioxidants: Basel, 2020, 9(8): E706. doi:10.3390/antiox9080706 |
[18] | Wang Y, Li J, Gao Y, et al. Hippo kinases regulate cell junctions to inhibit tumor metastasis in response to oxidative stress[J]. Redox Biol, 2019, 26: 101233. doi:10.1016/j.redox.2019.101233 |
[19] | Vrzal R, Frauenstein K, Proksch P, et al. Khellin and visnagin differentially modulate AHR signaling and downstream CYP1A activity in human liver cells[J]. PLoS One, 2013, 8(9): e74917. doi:10.1371/journal.pone.0074917 |
[20] | Siegel EM, Patel N, Lu B, et al. Circulating biomarkers of iron storage and clearance of incident human papillomavirus infection[J]. Cancer Epidemiol Biomarkers Prev, 2012, 21(5): 859-65. doi:10.1158/1055-9965.epi-12-0073 |
[21] | Guo N, Shen G, Zhang Y, et al. Interleukin-17 promotes migration and invasion of human cancer cells through upregulation of MTA1 expression[J]. Front Oncol, 2019, 9: 546. doi:10.3389/fonc.2019.00546 |
[22] | Alves JJP, De Medeiros Fernandes TAA, De Araújo JMG, et al. Th17 response in patients with cervical cancer[J]. Oncol Lett, 2018, 16(5): 6215-27. doi:10.1016/j.bjp.2017.03.006 |
[23] | Cheng X, Wang J, Liu C, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway[J]. J Exp Clin Cancer Res, 2021, 40(1): 199. doi:10.1186/s13046-021-01999-3 |
[24] | Ding H, Zhang L, Zhang C, et al. Screening of significant biomarkers related to prognosis of cervical cancer and functional study based on lncRNA-associated CeRNA regulatory network[J]. Comb Chem High Throughput Screen, 2021, 24(3): 472-82. doi:10.2174/1386207323999200729113028 |
[25] | Zhao MT, Whitworth KM, Lin H, et al. Porcine skin-derived progenitor (SKP) spheres and neurospheres: Distinct "stemness" identified by microarray analysis[J]. Cell Reprogram, 2010, 12(3): 329-45. doi:10.1089/cell.2009.0116 |
[26] | Morgan EL, Macdonald A. JAK2 inhibition impairs proliferation and sensitises cervical cancer cells to cisplatin-induced cell death[J]. Cancers: Basel, 2019, 11(12): E1934. doi:10.3390/cancers11121934 |
[27] | Simmons AN, Arce E, Lovero KL, et al. Subchronic SSRI administration reduces Insula response during affective anticipation in healthy volunteers[J]. Int J Neuropsychopharmacol, 2009, 12(8): 1009-20. doi:10.1017/s1461145709990149 |
[28] | Di Carlo E, Sorrentino C. Oxidative stress and age-related tumors[J]. Antioxidants: Basel, 2024, 13(9): 1109. doi:10.3390/antiox13091109 |
[29] | Xia Y, Wang G, Jiang M, et al. A novel biological activity of the STAT3 inhibitor stattic in inhibiting glutathione reductase and suppressing the tumorigenicity of human cervical cancer cells via a ROS-dependent pathway[J]. Onco Targets Ther, 2021, 14: 4047-60. doi:10.2147/ott.s313507 |
[30] | 朱 燕, 伍 钢, 欧阳礼辰, 等. 神经节苷脂GM3对人宫颈癌HeLa细胞凋亡和血管内皮生长因子表达的影响[J]. 肿瘤防治研究, 2015, 42(5): 450-3. |
[31] | Lu SH, Guan JH, Huang YL, et al. Experimental study of antiatherosclerosis effects with hederagenin in rats[J]. Evid Based Complement Alternat Med, 2015, 2015: 456354. doi:10.1155/2015/456354 |
[32] | Liu BX, Zhou JY, Li Y, et al. Hederagenin from the leaves of ivy (Hedera helix L.) induces apoptosis in human LoVo colon cells through the mitochondrial pathway[J]. BMC Complement Altern Med, 2014, 14: 412. doi:10.1186/1472-6882-14-412 |
[33] | Tu YB, Tan LH, Tao HX, et al. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products[J]. Phytomedicine, 2023, 116: 154862. doi:10.1016/j.phymed.2023.154862 |
[34] | Liu X, Zhang Q, Wang P, et al. Dissection of targeting molecular mechanisms of celastrol-induced nephrotoxicity via A combined deconvolution strategy of chemoproteomics and metabolomics[J]. Int J Biol Sci, 2024, 20(12): 4601-17. doi:10.7150/ijbs.91751 |
[1] | 陈鑫源, 吴成挺, 李瑞迪, 潘雪芹, 张耀丹, 陶俊宇, 林才志. 双术汤通过P53/SLC7A11/GPX4通路诱导胃癌细胞铁死亡[J]. 南方医科大学学报, 2025, 45(7): 1363-1371. |
[2] | 王立明, 陈宏睿, 杜燕, 赵鹏, 王玉洁, 田燕歌, 刘新光, 李建生. 益气滋肾方通过抑制PI3K/Akt/NF-κB通路改善小鼠慢性阻塞性肺疾病的炎症反应[J]. 南方医科大学学报, 2025, 45(7): 1409-1422. |
[3] | 何丽君, 陈晓菲, 闫陈昕, 师林. 扶正化积汤治疗非小细胞肺癌的分子机制:基于网络药理学及体外实验验证[J]. 南方医科大学学报, 2025, 45(6): 1143-1152. |
[4] | 李国永, 黎仁玲, 刘艺婷, 柯宏霞, 李菁, 王新华. 牛蒡子治疗小鼠病毒性肺炎后肺纤维化的机制:基于代谢组学、网络药理学和实验验证方法[J]. 南方医科大学学报, 2025, 45(6): 1185-1199. |
[5] | 莫艳秀, 舒洋, 莫钰兰, 刘峻彤, 徐欧欧, 邓华菲, 王岐本. 敲除CDC20可明显抑制宫颈癌细胞的增殖及侵袭转移[J]. 南方医科大学学报, 2025, 45(6): 1200-1211. |
[6] | 管丽萍, 颜燕, 卢心怡, 李智峰, 高晖, 曹东, 侯晨曦, 曾靖宇, 李欣怡, 赵洋, 王俊杰, 方会龙. 复方积雪草减轻小鼠日本血吸虫引起的肝纤维化:通过调控TLR4/MyD88通路抑制炎症-纤维化级联反应[J]. 南方医科大学学报, 2025, 45(6): 1307-1316. |
[7] | 唐培培, 谈勇, 殷燕云, 聂晓伟, 黄菁宇, 左文婷, 李玉玲. 调周滋阴方治疗早发性卵巢功能不全的疗效、安全性及作用机制[J]. 南方医科大学学报, 2025, 45(5): 929-941. |
[8] | 梁晓涛, 熊一凡, 刘雪琪, 梁小珊, 朱晓煜, 谢炜. 活血疏风颗粒通过抑制TLR4/NF-κB通路改善慢性偏头痛小鼠的中枢敏化[J]. 南方医科大学学报, 2025, 45(5): 986-994. |
[9] | 冉念东, 刘杰, 徐剑, 张永萍, 郭江涛. 黑骨藤正丁醇萃取成分治疗大鼠阿尔茨海默病的药效学及作用机制[J]. 南方医科大学学报, 2025, 45(4): 785-798. |
[10] | 岳雅清, 牟召霞, 王希波, 刘艳. Aurora-A过表达通过激活NF-κBp65/ARPC4信号轴促进宫颈癌细胞的侵袭和转移[J]. 南方医科大学学报, 2025, 45(4): 837-843. |
[11] | 徐皓男, 张放, 黄钰莹, 姚其盛, 管悦琴, 陈浩. 百蕊草通过调节肠道菌群和调控EGFR/PI3K/Akt信号通路改善小鼠抗生素相关性腹泻[J]. 南方医科大学学报, 2025, 45(2): 285-295. |
[12] | 高俊杰, 叶开, 吴竞. 槲皮素通过调控TP53基因抑制肾透明细胞癌的增殖和迁移[J]. 南方医科大学学报, 2025, 45(2): 313-321. |
[13] | 刘莹, 李柏睿, 李永财, 常禄博, 王娇, 杨琳, 颜永刚, 屈凯, 刘继平, 张岗, 沈霞. 加味逍遥丸通过神经递质调节、抗炎抗氧化及肠道菌群调控改善大鼠的抑郁样行为[J]. 南方医科大学学报, 2025, 45(2): 347-358. |
[14] | 褚乔, 王小娜, 续佳颖, 彭荟林, 赵裕琳, 张静, 陆国玉, 王恺. 白头翁皂苷D通过多靶点和多途径抑制三阴性乳腺癌侵袭转移[J]. 南方医科大学学报, 2025, 45(1): 150-161. |
[15] | 龙秀鹏, 陶顺, 阳绅, 李素云, 饶利兵, 李莉, 张哲. 槲皮素通过抑制MAPK信号通路改善心力衰竭[J]. 南方医科大学学报, 2025, 45(1): 187-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||