南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (2): 313-321.doi: 10.12122/j.issn.1673-4254.2025.02.12

• • 上一篇    

槲皮素通过调控TP53基因抑制肾透明细胞癌的增殖和迁移

高俊杰(), 叶开, 吴竞()   

  1. 皖南医学院第二附属医院检验科,安徽 芜湖 241000
  • 收稿日期:2024-09-03 出版日期:2025-02-20 发布日期:2025-03-03
  • 通讯作者: 吴竞 E-mail:631517383@qq.com;wjwjwj1973@126.com
  • 作者简介:高俊杰,检验师,E-mail: 631517383@qq.com
  • 基金资助:
    国家自然科学基金(82202378);皖南医学院2024年中青年科研基金(WK2024ZQNZ84);皖南医学院第二附属医院2023年“三新”项目(Y23019);皖南医学院第二附属医院2023年科研项目(YK2023Y04)

Quercetin inhibits proliferation and migration of clear cell renal cell carcinoma cells by regulating TP53 gene

Junjie GAO(), Kai YE, Jing WU()   

  1. Department of Laboratory Medicine, Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
  • Received:2024-09-03 Online:2025-02-20 Published:2025-03-03
  • Contact: Jing WU E-mail:631517383@qq.com;wjwjwj1973@126.com
  • Supported by:
    National Natural Science Foundation of China(82202378)

摘要:

目的 筛选槲皮素治疗肾透明细胞癌(ccRCC)的潜在分子靶点。 方法 运用网络药理学方法从多个数据库中筛选槲皮素的治疗靶点,运用孟德尔随机化方法从4907种血浆蛋白中筛选与ccRCC显著相关的靶点,构建药物-疾病网络模型,筛选出潜在的关键靶点,运用生物信息学技术评估这些靶点的作用,培养ccRCC细胞并用不用浓度槲皮素处理,行CCK-8实验、创伤愈合实验、RT-qPCR和Western blotting对筛选靶点进行验证。 结果 网络药理学和孟德尔随机化综合分析筛选出了TP53(OR=3.325,95% CI:1.805-6.124,P=0.0001)、ARF4(OR=0.173,95% CI:0.065-0.456,P=0.0003)和DPP4(OR=0.463,95% CI:0.302-0.711,P=0.0004)3个槲皮素治疗ccRCC的核心靶点。生物信息学分析表明TP53在肾透明细胞癌中表达增高(P<0.001);生存分析显示高表达TP53的肾癌患者预后更差(P<0.001);分子对接显示槲皮素与TP53的结合能为-5.83 kcal/mol;CCK-8实验和创伤愈合实验显示槲皮素在体外抑制786-O细胞的增殖和迁移(P<0.05);RT-qPCR和Western blotting显示槲皮素在体外抑制TP53 mRNA和蛋白的表达(P<0.05)。 结论 TP53可能是槲皮素治疗ccRCC的关键靶点,为槲皮素治疗肾透明细胞癌的分子机制研究奠定了基础。

关键词: 槲皮素, 肾透明细胞癌, 网络药理学, 孟德尔随机化, TP53基因, 分子靶点

Abstract:

Objective To identify potential molecular targets of quercetin in the treatment of clear cell renal carcinoma (ccRCC). Methods The therapeutic targets of quercetin were screened from multiple databases by network pharmacology analysis, and the targets significantly correlated with ccRCC were screened from 4907 plasma proteins using a Mendelian randomization method. The drug-disease network model was constructed to screen the potential key targets. The functions of these targets were evaluated via bioinformatics analysis, and the screened targets were verified in cultured ccRCC cells. Results Network pharmacology analysis combined with Mendelian randomization identified TP53 (OR=3.325, 95% CI: 1.805-6.124, P=0.0001), ARF4 (OR=0.173, 95% CI: 0.065-0.456, P=0.0003), and DPP4 (OR=0.463, 95% CI: 0.302-0.711, P=0.0004) as the core targets in quercetin treatment of ccRCC. Bioinformatics analysis showed that TP53 was highly expressed in ccRCC, and patients with high TP53 expressions had worse survival outcomes. Molecular docking studies showed that the binding energy between quercetin and TP53 was -5.83 kcal/mol. In cultured 786-O cells, CCK-8 assay and wound healing assay showed that treatment with quercetin significantly inhibited cell proliferation and migration. Quercetin treatment also strongly suppressed the expression of TP53 at both the mRNA and protein levels in 786-O cells as shown by RT-qPCR and Western blotting. Conclusion TP53 may be the key target of quercetin in the treatment of ccRCC, which sheds light on potential molecular mechanism that mediate the therapeutic effect of quercetin.

Key words: quercetin, renal clear cell carcinoma, network pharmacology, Mendelian randomization, TP53 gene, molecular targets