Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (8): 1777-1790.doi: 10.12122/j.issn.1673-4254.2025.08.22
Qiucen WU1(), Xueqi LU1, Yaoqi WEN1, Yong HONG1, Yuliang WU2(
), Chaomin CHEN1(
)
Received:
2025-01-03
Online:
2025-08-20
Published:
2025-09-05
Contact:
Yuliang WU, Chaomin CHEN
E-mail:1251821148@qq.com;84833910@qq.com;571611621@qq.com
Qiucen WU, Xueqi LU, Yaoqi WEN, Yong HONG, Yuliang WU, Chaomin CHEN. A myocardial infarction detection and localization model based on multi-scale field residual blocks fusion with modified channel attention[J]. Journal of Southern Medical University, 2025, 45(8): 1777-1790.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.08.22
Class | Number of subjects |
---|---|
AMI | 17 |
ALMI | 16 |
ASMI | 27 |
IMI | 30 |
ILMI | 23 |
IPMI | 1 |
IPLMI | 8 |
LMI | 1 |
PMI | 1 |
PLMI | 2 |
Unknown | 22 |
Total | 148 |
Tab.1 Number of subjects with different types of MI in the PTB dataset
Class | Number of subjects |
---|---|
AMI | 17 |
ALMI | 16 |
ASMI | 27 |
IMI | 30 |
ILMI | 23 |
IPMI | 1 |
IPLMI | 8 |
LMI | 1 |
PMI | 1 |
PLMI | 2 |
Unknown | 22 |
Total | 148 |
Type of disease | Number of patients | Number of heartbeats | Percentage (%) |
---|---|---|---|
MI | 148 | 49179 | 82.53 |
HC | 52 | 10409 | 17.47 |
Total | 200 | 59588 | 100 |
Tab.2 Patient count statistics of disease types in the PTB database
Type of disease | Number of patients | Number of heartbeats | Percentage (%) |
---|---|---|---|
MI | 148 | 49179 | 82.53 |
HC | 52 | 10409 | 17.47 |
Total | 200 | 59588 | 100 |
Branch1 | Branch2 | Branch3 |
---|---|---|
Input (ECG signals) | ||
Conv1d (kernel=7, Number of kernel=64) | ||
BN | ||
ReLU | ||
MaxPool1d (kernel=3, Number of kernel=2) | ||
Backbone Block | ||
RB+MCA (Number of kernel=64) | RB+MCA (Number of kernel=64) | RB+MCA (Number of kernel=64) |
RB+MCA (Number of kernel=128) | RB+MCA (Number of kernel=128) | RB+MCA (Number of kernel=128) |
RB+MCA ( Number of kernel=256) | RB+MCA (Number of kernel=256) | RB+MCA (Number of kernel=256) |
RB+MCA ( Number of kernel=512) | RB+MCA (Number of kernel=512) | RB+MCA (Number of kernel=512) |
GAP | GAP | GAP |
Fusion | ||
Concatenation | ||
Flatten | ||
Dropout (P=0.2) | ||
FC |
Tab.3 Parameters of the MSF-RB-MCA algorithm
Branch1 | Branch2 | Branch3 |
---|---|---|
Input (ECG signals) | ||
Conv1d (kernel=7, Number of kernel=64) | ||
BN | ||
ReLU | ||
MaxPool1d (kernel=3, Number of kernel=2) | ||
Backbone Block | ||
RB+MCA (Number of kernel=64) | RB+MCA (Number of kernel=64) | RB+MCA (Number of kernel=64) |
RB+MCA (Number of kernel=128) | RB+MCA (Number of kernel=128) | RB+MCA (Number of kernel=128) |
RB+MCA ( Number of kernel=256) | RB+MCA (Number of kernel=256) | RB+MCA (Number of kernel=256) |
RB+MCA ( Number of kernel=512) | RB+MCA (Number of kernel=512) | RB+MCA (Number of kernel=512) |
GAP | GAP | GAP |
Fusion | ||
Concatenation | ||
Flatten | ||
Dropout (P=0.2) | ||
FC |
Type | Branch1 Kernel | Branch2 Kernel | Branch3 Kernel | Number of kernel |
---|---|---|---|---|
Input | - | - | - | - |
DS Conv1d | 1×11 | 1×13 | 1×15 | 64/128/256/512 |
BN | - | - | - | - |
ReLU | - | - | - | - |
DS Conv1d | 1×11 | 1×13 | 1×15 | 64/128/256/512 |
BN | - | - | - | |
ReLU | - | - | - | - |
MCA | - | - | - | - |
Residual connection | - | - | - | - |
Tab.4 Details of the residual blocks in the 3 branches of the model
Type | Branch1 Kernel | Branch2 Kernel | Branch3 Kernel | Number of kernel |
---|---|---|---|---|
Input | - | - | - | - |
DS Conv1d | 1×11 | 1×13 | 1×15 | 64/128/256/512 |
BN | - | - | - | - |
ReLU | - | - | - | - |
DS Conv1d | 1×11 | 1×13 | 1×15 | 64/128/256/512 |
BN | - | - | - | |
ReLU | - | - | - | - |
MCA | - | - | - | - |
Residual connection | - | - | - | - |
Convolutional kernel size | Detection acc | Localization acc |
---|---|---|
1×3 1×5 1×7 | 99.94 | 99.79 |
1×5 1×7 1×9 | 99.94 | 99.76 |
1×7 1×9 1×11 | 99.95 | 99.80 |
1×9 1×11 1×13 | 99.96 | 99.78 |
1×11 1×13 1×15 | 99.96 | 99.81 |
1×13 1×15 1×17 | 99.93 | 99.80 |
1×15 1×17 1×19 | 99.95 | 99.77 |
Tab.5 Accuracy with different convolution kernel sizes (%)
Convolutional kernel size | Detection acc | Localization acc |
---|---|---|
1×3 1×5 1×7 | 99.94 | 99.79 |
1×5 1×7 1×9 | 99.94 | 99.76 |
1×7 1×9 1×11 | 99.95 | 99.80 |
1×9 1×11 1×13 | 99.96 | 99.78 |
1×11 1×13 1×15 | 99.96 | 99.81 |
1×13 1×15 1×17 | 99.93 | 99.80 |
1×15 1×17 1×19 | 99.95 | 99.77 |
Fold | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
1 | 99.97 | 99.95 | 99.97 | 99.99 | 99.98 |
2 | 99.97 | 99.86 | 100 | 99.97 | 99.98 |
3 | 99.97 | 99.86 | 100 | 99.97 | 99.98 |
4 | 99.95 | 99.86 | 99.97 | 99.97 | 99.97 |
5 | 99.93 | 99.66 | 99.99 | 99.93 | 99.96 |
Average | 99.96 | 99.84 | 99.99 | 99.97 | 99.98 |
Tab.6 Classification performance of MI detection (5-fold cross-validation)(%)
Fold | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
1 | 99.97 | 99.95 | 99.97 | 99.99 | 99.98 |
2 | 99.97 | 99.86 | 100 | 99.97 | 99.98 |
3 | 99.97 | 99.86 | 100 | 99.97 | 99.98 |
4 | 99.95 | 99.86 | 99.97 | 99.97 | 99.97 |
5 | 99.93 | 99.66 | 99.99 | 99.93 | 99.96 |
Average | 99.96 | 99.84 | 99.99 | 99.97 | 99.98 |
Original/Predicted | HC | MI | Acc (%) | Spe (%) | Sen (%) | Pre (%) | F1 (%) |
---|---|---|---|---|---|---|---|
HC | 10 392 | 17 | 99.96 | 99.84 | 99.99 | 99.97 | 99.98 |
MI | 7 | 49 172 |
Tab.7 Confusion matrix and performance for MI detection (5-fold cross validation)
Original/Predicted | HC | MI | Acc (%) | Spe (%) | Sen (%) | Pre (%) | F1 (%) |
---|---|---|---|---|---|---|---|
HC | 10 392 | 17 | 99.96 | 99.84 | 99.99 | 99.97 | 99.98 |
MI | 7 | 49 172 |
Fold | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
1 | 99.87 | 99.99 | 99.91 | 99.89 | 99.90 |
2 | 99.79 | 99.98 | 98.86 | 99.87 | 99.34 |
3 | 99.85 | 99.98 | 99.87 | 99.88 | 99.88 |
4 | 99.75 | 99.97 | 99.76 | 99.82 | 99.79 |
5 | 99.77 | 99.97 | 99.83 | 99.85 | 99.84 |
Average | 99.81 | 99.98 | 99.65 | 99.86 | 99.75 |
Tab.8 Classification performance of MI localization (5-fold cross validation)(%)
Fold | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
1 | 99.87 | 99.99 | 99.91 | 99.89 | 99.90 |
2 | 99.79 | 99.98 | 98.86 | 99.87 | 99.34 |
3 | 99.85 | 99.98 | 99.87 | 99.88 | 99.88 |
4 | 99.75 | 99.97 | 99.76 | 99.82 | 99.79 |
5 | 99.77 | 99.97 | 99.83 | 99.85 | 99.84 |
Average | 99.81 | 99.98 | 99.65 | 99.86 | 99.75 |
Original/Predicted | HC | AMI | ALMI | ASMI | IMI | ILMI | IPMI | IPLMI | LMI | PMI | PLMI |
---|---|---|---|---|---|---|---|---|---|---|---|
HC | 10 401 | 0 | 1 | 4 | 1 | 2 | 0 | 0 | 0 | 0 | 0 |
AMI | 1 | 6287 | 5 | 7 | 4 | 3 | 0 | 0 | 0 | 0 | 0 |
ALMI | 1 | 4 | 6535 | 8 | 4 | 2 | 0 | 0 | 0 | 0 | 0 |
ASMI | 3 | 5 | 7 | 11 324 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
IMI | 0 | 3 | 8 | 5 | 12 518 | 4 | 0 | 2 | 0 | 0 | 0 |
ILMI | 2 | 2 | 6 | 2 | 7 | 8022 | 0 | 2 | 0 | 0 | 0 |
IPMI | 0 | 0 | 0 | 0 | 0 | 1 | 46 | 0 | 0 | 0 | 0 |
IPLMI | 0 | 1 | 1 | 1 | 3 | 1 | 0 | 2662 | 0 | 0 | 0 |
LMI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 456 | 0 | 0 |
PMI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 455 | 0 |
PLMI | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 765 |
Tab.9 Confusion matrix for MI localization (5-fold cross-validation)
Original/Predicted | HC | AMI | ALMI | ASMI | IMI | ILMI | IPMI | IPLMI | LMI | PMI | PLMI |
---|---|---|---|---|---|---|---|---|---|---|---|
HC | 10 401 | 0 | 1 | 4 | 1 | 2 | 0 | 0 | 0 | 0 | 0 |
AMI | 1 | 6287 | 5 | 7 | 4 | 3 | 0 | 0 | 0 | 0 | 0 |
ALMI | 1 | 4 | 6535 | 8 | 4 | 2 | 0 | 0 | 0 | 0 | 0 |
ASMI | 3 | 5 | 7 | 11 324 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
IMI | 0 | 3 | 8 | 5 | 12 518 | 4 | 0 | 2 | 0 | 0 | 0 |
ILMI | 2 | 2 | 6 | 2 | 7 | 8022 | 0 | 2 | 0 | 0 | 0 |
IPMI | 0 | 0 | 0 | 0 | 0 | 1 | 46 | 0 | 0 | 0 | 0 |
IPLMI | 0 | 1 | 1 | 1 | 3 | 1 | 0 | 2662 | 0 | 0 | 0 |
LMI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 456 | 0 | 0 |
PMI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 455 | 0 |
PLMI | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 765 |
Original/Predicted | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
HC | 99.97 | 99.99 | 99.92 | 99.93 | 99.93 |
AMI | 99.94 | 99.97 | 99.68 | 99.76 | 99.72 |
ALMI | 99.92 | 99.95 | 99.71 | 99.56 | 99.63 |
ASMI | 99.92 | 99.94 | 99.84 | 99.76 | 99.80 |
IMI | 99.93 | 99.96 | 99.82 | 99.84 | 99.83 |
ILMI | 99.94 | 99.97 | 99.74 | 99.83 | 99.78 |
IPMI | 100 | 100 | 97.78 | 100 | 98.82 |
IPLMI | 99.98 | 99.99 | 99.74 | 99.81 | 99.78 |
LMI | 100 | 100 | 100 | 100 | 100 |
PMI | 100 | 100 | 100 | 100 | 100 |
PLMI | 100 | 100 | 99.87 | 100 | 99.93 |
Overall | 99.81 | 99.98 | 99.65 | 99.86 | 99.75 |
Tab.10 Performance of MI localization across different categories (5-fold cross-validation)(%)
Original/Predicted | Acc | Spe | Sen | Pre | F1 |
---|---|---|---|---|---|
HC | 99.97 | 99.99 | 99.92 | 99.93 | 99.93 |
AMI | 99.94 | 99.97 | 99.68 | 99.76 | 99.72 |
ALMI | 99.92 | 99.95 | 99.71 | 99.56 | 99.63 |
ASMI | 99.92 | 99.94 | 99.84 | 99.76 | 99.80 |
IMI | 99.93 | 99.96 | 99.82 | 99.84 | 99.83 |
ILMI | 99.94 | 99.97 | 99.74 | 99.83 | 99.78 |
IPMI | 100 | 100 | 97.78 | 100 | 98.82 |
IPLMI | 99.98 | 99.99 | 99.74 | 99.81 | 99.78 |
LMI | 100 | 100 | 100 | 100 | 100 |
PMI | 100 | 100 | 100 | 100 | 100 |
PLMI | 100 | 100 | 99.87 | 100 | 99.93 |
Overall | 99.81 | 99.98 | 99.65 | 99.86 | 99.75 |
Model | Input size | Params (M) | FLOPs (M) | Test time (ms) |
---|---|---|---|---|
ML-ResNet staked sparse autoencoder and treebagger[ | (1,651) | 5.22 | 167.82 | 3.10 |
ResNet[ | (1,651) | 3.85 | 224.58 | 2.89 |
MSF-RB-MCA | (1,651) | 2.70 | 36.68 | 0.62 |
Tab.11 Comparison of complexity among different models
Model | Input size | Params (M) | FLOPs (M) | Test time (ms) |
---|---|---|---|---|
ML-ResNet staked sparse autoencoder and treebagger[ | (1,651) | 5.22 | 167.82 | 3.10 |
ResNet[ | (1,651) | 3.85 | 224.58 | 2.89 |
MSF-RB-MCA | (1,651) | 2.70 | 36.68 | 0.62 |
Model | Detection Acc | Localization Acc |
---|---|---|
MSF-RB-SENet | 99.51 | 99.69 |
MSF-RB-CBAM | 99.64 | 99.38 |
MSF-RB-CA | 99.70 | 99.59 |
MSF-RB-MCA | 99.96 | 99.81 |
Tab.12 Comparison of attention mechanism effectiveness (%)
Model | Detection Acc | Localization Acc |
---|---|---|
MSF-RB-SENet | 99.51 | 99.69 |
MSF-RB-CBAM | 99.64 | 99.38 |
MSF-RB-CA | 99.70 | 99.59 |
MSF-RB-MCA | 99.96 | 99.81 |
Author | Lead | Framework | Datasets | Performance | |
---|---|---|---|---|---|
Detection | Localization | ||||
Ahmad et al[ | Lead II | MIF | PTB | Acc=98.4% Sen=95% | |
MFF | PTB | Acc=99.2% Sen=98% | |||
Acharya et al[ | Lead II | 11-CNN layer | PTB | Acc=95.22% Sen=95.49% Spe=94.19% | |
Feng et al[ | Lead II | Mutil-channel CNN-LSTM | PTB | Acc=95.4% Sen=98.2% Spe=96.8% | |
Zhang et al[ | Lead II | Staked sparse autoencoder and treebagger | PTB | Acc=99.90% Sen=99.98% Spe=99.52% | Acc=98.88% Sen=99.95% Spe=99.87% |
He et al[ | Lead II | ResNet18 | PTB | Acc=99.92% Sen=99.96% Spe=99.71% | Acc=99.68% Sen=99.66% Spe=99.97% |
This study | Lead II | MSF-RB-MCA | PTB | Acc=99.96% Sen=99.99% Spe=99.84% | Acc=99.81% Sen=99.65% Spe=99.98% |
Tab.13 Comparison of MI detection and localization performance from this study with other methods
Author | Lead | Framework | Datasets | Performance | |
---|---|---|---|---|---|
Detection | Localization | ||||
Ahmad et al[ | Lead II | MIF | PTB | Acc=98.4% Sen=95% | |
MFF | PTB | Acc=99.2% Sen=98% | |||
Acharya et al[ | Lead II | 11-CNN layer | PTB | Acc=95.22% Sen=95.49% Spe=94.19% | |
Feng et al[ | Lead II | Mutil-channel CNN-LSTM | PTB | Acc=95.4% Sen=98.2% Spe=96.8% | |
Zhang et al[ | Lead II | Staked sparse autoencoder and treebagger | PTB | Acc=99.90% Sen=99.98% Spe=99.52% | Acc=98.88% Sen=99.95% Spe=99.87% |
He et al[ | Lead II | ResNet18 | PTB | Acc=99.92% Sen=99.96% Spe=99.71% | Acc=99.68% Sen=99.66% Spe=99.97% |
This study | Lead II | MSF-RB-MCA | PTB | Acc=99.96% Sen=99.99% Spe=99.84% | Acc=99.81% Sen=99.65% Spe=99.98% |
[1] | World Health Organization. Cardiovascular diseases (CVDs)[EB/OL]. [2021-12-26]. . doi:10.1002/9781118910573.ch5 |
[2] | Acharya UR, Fujita H, Oh SL, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals[J]. Inf Sci, 2017, 415: 190-8. doi:10.1016/j.ins.2017.06.027 |
[3] | Cho Y, Kwon JM, Kim KH, et al. Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography[J]. Sci Rep, 2020, 10(1): 20495. doi:10.1038/s41598-020-77599-6 |
[4] | Xiong P, Lee SM, Chan G. Deep learning for detecting and locating myocardial infarction by electrocardiogram: a literature review[J]. Front Cardiovasc Med, 2022, 9: 860032. doi:10.3389/fcvm.2022.860032 |
[5] | Jian JZ, Ger TR, Lai HH, et al. Detection of myocardial infarction using ECG and multi-scale feature concatenate[J]. Sensors: Basel, 2021, 21(5): 1906. doi:10.3390/s21051906 |
[6] | Liu XW, Wang H, Li ZJ, et al. Deep learning in ECG diagnosis: a review[J]. Knowl Based Syst, 2021, 227: 107187. doi:10.1016/j.knosys.2021.107187 |
[7] | Cai JX, Sun WW, Guan JF, et al. Multi-ECGNet for ECG arrythmia multi-label classification[J]. IEEE Access, 2020, 8: 110848-58. doi:10.1109/access.2020.3001284 |
[8] | Bhaskar NA. Performance analysis of support vector machine and neural networks in detection of myocardial infarction[J]. Procedia Comput Sci, 2015, 46: 20-30. doi:10.1016/j.procs.2015.01.043 |
[9] | Al-Naima FM, Ali AH, Mahdi SS. Data acquisition for myocardial infarction classification based on wavelets and Neural Networks[C]//2008 5th International Multi-Conference on Systems, Signals and Devices. July 20-22, 2008. Amman. IEEE, 2008: 1-6. doi:10.1109/ssd.2008.4632817 |
[10] | Sun L, Lu Y, Yang K, et al. ECG analysis using multiple instance learning for myocardial infarction detection[J]. IEEE Trans Biomed Eng, 2012, 59(12): 3348-56. doi:10.1109/tbme.2012.2213597 |
[11] | Liu B, Liu JK, Wang GQ, et al. A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection[J]. Comput Biol Med, 2015, 61: 178-84. doi:10.1016/j.compbiomed.2014.08.010 |
[12] | Chang PC, Lin JJ, Hsieh JC, et al. Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models[J]. Appl Soft Comput, 2012, 12(10): 3165-75. doi:10.1016/j.asoc.2012.06.004 |
[13] | Cao D, Lin D, Lv Y. ECG codebook model for Myocardial Infarction detection[C]//2014 10th International Conference on Natural Computation (ICNC). IEEE, 2014: 797-801. doi:10.1109/icnc.2014.6975939 |
[14] | Lu HL, Ong K, Chia P. An automated ECG classification system based on a neuro-fuzzy system[C]//Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163). Cambridge, MA, USA. IEEE, 2000: 387-390. |
[15] | Zhang DD, Yang S, Yuan XH, et al. Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram[J]. iScience, 2021, 24(4): 102373. doi:10.1016/j.isci.2021.102373 |
[16] | Jun TJ, Nguyen HM, Kang D, et al. ECG arrhythmia classification using a 2-D convolutional neural network[EB/OL]. 2018: 1804.06812. . doi:10.48550/arXiv.1804.06812 |
[17] | Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks[J]. IEEE Trans Biomed Eng, 2016, 63(3): 664-75. doi:10.1109/tbme.2015.2468589 |
[18] | Al Rahhal MM, Bazi Y, Almubarak H, et al. Dense convolutional networks with focal loss and image generation for electrocardiogram classification[J]. IEEE Access, 2019, 7: 182225-37. doi:10.1109/access.2019.2960116 |
[19] | Zhang JS, Lin F, Xiong P, et al. Automated detection and localization of myocardial infarction with Staked sparse autoencoder and TreeBagger[J]. IEEE Access, 2019, 7: 70634-42. doi:10.1109/access.2019.2919068 |
[20] | Ahmad Z, Tabassum A, Guan L, et al. ECG heartbeat classification using multimodal fusion[J]. IEEE Access, 2021, 9: 100615-26. doi:10.1109/access.2021.3097614 |
[21] | Goldberger AL, Amaral LA, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): E215-20. doi:10.1161/01.cir.101.23.e215 |
[22] | Singh BN, Tiwari AK. Optimal selection of wavelet basis function applied to ECG signal denoising[J]. Digit Signal Process, 2006, 16(3): 275-87. doi:10.1016/j.dsp.2005.12.003 |
[23] | Pan JP, Tompkins WJ. A real-time QRS detection algorithm[J]. IEEE Trans Biomed Eng, 1985, BME-32(3): 230-6. doi:10.1109/tbme.1985.325532 |
[24] | Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges[J]. Brief Bioinform, 2018, 19(6): 1236-46. doi:10.1093/bib/bbx044 |
[25] | Fei NY, Gao YZ, Lu ZW, et al. Z-score normalization, hubness, and few-shot learning[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021. Montreal, QC, Canada. IEEE, 2021: 142-151. doi:10.1109/iccv48922.2021.00021 |
[26] | Zhang X, Lin MJ, Hong Y, et al. MSFT: a multi-scale feature-based transformer model for arrhythmia classification[J]. Biomed Signal Process Control, 2025, 100: 106968. doi:10.1016/j.bspc.2024.106968 |
[27] | Le KH, Pham HH, Nguyen TBT, et al. LightX3ECG: a lightweight and eXplainable deep learning system for 3-lead electrocardiogram classification[J]. Biomed Signal Process Control, 2023, 85: 104963. doi:10.1016/j.bspc.2023.104963 |
[28] | Cheng JY, Zou QX, Zhao YX. ECG signal classification based on deep CNN and BiLSTM[J]. BMC Med Inform Decis Mak, 2021, 21(1): 365. doi:10.1186/s12911-021-01736-y |
[29] | Sandler M, Howard A, Zhu ML, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 4510-4520. doi:10.1109/cvpr.2018.00474 |
[30] | Kattenborn T, Leitloff J, Schiefer F, et al. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing[J]. ISPRS J Photogramm Remote Sens, 2021, 173: 24-49. doi:10.1016/j.isprsjprs.2020.12.010 |
[31] | Targ S, Almeida D, Lyman K. Resnet in resnet: generalizing residual architectures[EB/OL]. 2016: 1603.08029. . |
[32] | He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA. IEEE, 2016: 770-778. doi:10.1109/cvpr.2016.90 |
[33] | Hou QB, Zhou DQ, Feng JS. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021. Nashville, TN, USA. IEEE, 2021: 13708-13717. doi:10.1109/cvpr46437.2021.01350 |
[34] | Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 7132-7141. doi:10.1109/cvpr.2018.00745 |
[35] | Woo S, Park J, Lee JY, et al. CBAM: convolutional block attention module[C]//Computer Vision – ECCV 2018. Cham: Springer, 2018: 3-19. doi:10.1007/978-3-030-01234-2_1 |
[36] | Van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. J Machine Learning Res, 2008, 9(11):1305-12. |
[37] | Feng K, Pi XT, Liu HY, et al. Myocardial infarction classification based on convolutional neural network and recurrent neural network[J]. Appl Sci, 2019, 9(9): 1879. doi:10.3390/app9091879 |
[1] | Ziyu ZHENG, Xiaying YANG, Shengjie WU, Shijie ZHANG, Guorong LYU, Peizhong LIU, Jun WANG, Shaozheng HE. A multi-feature fusion-based model for fetal orientation classification from intrapartum ultrasound videos [J]. Journal of Southern Medical University, 2025, 45(7): 1563-1570. |
[2] | Zhenyan MA, Xin A, Lei ZHAO, Hongbo ZHANG, Ke LIU, Yiqing ZHAO, Geng QIAN. A cardiac magnetic resonance-based risk prediction model for left ventricular adverse remodeling following percutaneous coronary intervention for acute ST-segment elevation myocardial infarction: a multi-center prospective study [J]. Journal of Southern Medical University, 2025, 45(4): 669-683. |
[3] | Wenwei LI, Zerui MAO, Yongbo WANG, Zhaoying BIAN, Jing HUANG. A sparse-view cone-beam CT reconstruction algorithm based on bidirectional flow field- guided projection completion [J]. Journal of Southern Medical University, 2025, 45(2): 395-408. |
[4] | Yadi HE, Xuanru ZHOU, Jinhui JIN, Ting SONG. PE-CycleGAN network based CBCT-sCT generation for nasopharyngeal carsinoma adaptive radiotherapy [J]. Journal of Southern Medical University, 2025, 45(1): 179-186. |
[5] | Weiyang FANG, Hui XIAO, Shuang WANG, Xiaoming LIN, Chaomin CHEN. A deep learning model based on magnetic resonance imaging and clinical feature fusion for predicting preoperative cytokeratin 19 status in hepatocellular carcinoma [J]. Journal of Southern Medical University, 2024, 44(9): 1738-1751. |
[6] | Jiazhi OU, Chang'an ZHAN, Feng YANG. An autoencoder model based on one-dimensional neural network for epileptic EEG anomaly detection [J]. Journal of Southern Medical University, 2024, 44(9): 1796-1804. |
[7] | Ke LIU, Zhenyan MA, Lei FU, Liping ZHANG, Xin A, Shaobo XIAO, Zhen ZHANG, Hongbo ZHANG, Lei ZHAO, Geng QIAN. Predictive value of global longitudinal strain measured by cardiac magnetic resonance imaging for left ventricular remodeling after acute ST-segment elevation myocardial infarction: a multi-centered prospective study [J]. Journal of Southern Medical University, 2024, 44(6): 1033-1039. |
[8] | Chen WANG, Mingqiang MENG, Mingqiang LI, Yongbo WANG, Dong ZENG, Zhaoying BIAN, Jianhua MA. Reconstruction from CT truncated data based on dual-domain transformer coupled feature learning [J]. Journal of Southern Medical University, 2024, 44(5): 950-959. |
[9] | WANG Zining, YANG Ming, LI Shuanglei, CHI Haitao, WANG Junhui, XIAO Cangsong. A transcriptomic analysis of correlation between mitochondrial function and energy metabolism remodeling in mice with myocardial fibrosis following myocardial infarction [J]. Journal of Southern Medical University, 2024, 44(4): 666-674. |
[10] | CUI Jianing, LIU Wenjia, YAN Fei, ZHAO Yanan, CHEN Weijie, LUO Chuncai, ZHANG Xinghua, LI Tao. Predictive value of cardiac magnetic resonance imaging for adverse left ventricular remodeling after acute ST-segment elevation myocardial infarction [J]. Journal of Southern Medical University, 2024, 44(3): 553-562. |
[11] | LONG Kaixing, WENG Danyi, GENG Jian, LU Yanmeng, ZHOU Zhitao, CAO Lei. Automatic classification of immune-mediated glomerular diseases based on multi-modal multi-instance learning [J]. Journal of Southern Medical University, 2024, 44(3): 585-593. |
[12] | XIAO Hui, FANG Weiyang, LIN Mingjun, ZHOU Zhenzhong, FEI Hongwen, CHEN Chaomin. A multiscale carotid plaque detection method based on two-stage analysis [J]. Journal of Southern Medical University, 2024, 44(2): 387-396. |
[13] | Caolin LIU, Qingqing ZOU, Menghong WANG, Qinmei YANG, Liwen SONG, Zixiao LU, Qianjin FENG, Yinghua ZHAO. Identification of osteoid and chondroid matrix mineralization in primary bone tumors using a deep learning fusion model based on CT and clinical features: a multi-center retrospective study [J]. Journal of Southern Medical University, 2024, 44(12): 2412-2420. |
[14] | MI Jia, ZHOU Yujia, FENG Qianjin. A 3D/2D registration method based on reconstruction of orthogonal-view Xray images [J]. Journal of Southern Medical University, 2023, 43(9): 1636-1643. |
[15] | CHU Zhiqin, QU Yaoming, ZHONG Tao, LIANG Shujun, WEN Zhibo, ZHANG Yu. A Dual-Aware deep learning framework for identification of glioma isocitrate dehydrogenase genotype using magnetic resonance amide proton transfer modalities [J]. Journal of Southern Medical University, 2023, 43(8): 1379-1387. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||