Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (9): 1796-1804.doi: 10.12122/j.issn.1673-4254.2024.09.20
Previous Articles Next Articles
Jiazhi OU(), Chang'an ZHAN, Feng YANG(
)
Received:
2024-01-15
Online:
2024-09-20
Published:
2024-09-30
Contact:
Feng YANG
E-mail:2715666722@qq.com;yangf@smu.edu.cn
Supported by:
Jiazhi OU, Chang'an ZHAN, Feng YANG. An autoencoder model based on one-dimensional neural network for epileptic EEG anomaly detection[J]. Journal of Southern Medical University, 2024, 44(9): 1796-1804.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.09.20
Encoder | Decoder |
---|---|
C_1 (O=64, S=2, P=3, K=7) | D_1 (O=1024, S=2, K=2) |
C_2 (O=128, S=2, P=1, K=3) | D_2 (O=1024, S=1, K=1) |
C_3 (O=128, S=1, P=1, K=3) | D_3 (O=512, S=2, K=2) |
C_4 (O=256, S=2, P=1, K=3) | D_4 (O=512, S=1, K=1) |
C_5 (O=256, S=1, P=1, K=3) | D_5 (O=256, S=2, K=2) |
C_6 (O=512, S=2, P=1, K=3) | D_6 (O=256, S=1, K=1) |
C_7 (O=512, S=1, P=1, K=3) | D_7 (O=128, S=4, K=4) |
C_8 (O=1024, S=2, P=1, K=3) | D_8 (O=128, S=1, K=1) |
C_9 (O=1024, S=1, P=1, K=3) | D_9 (O=64, S=4, K=4) |
C_10 (O=2048, S=1, P=1, K=3) | D_10 (O=64, S=1, K=1) |
C_11 (O=2048, S=1, P=0, K=3) | D_11 (O=32, S=4, K=4) |
C_12 (O=2048, S=1, P=0, K=3) | D_12 (O=18, S=1, K=1) |
C_13 (O=2048, S=1, P=0, K=3) | D_13 (O=18, S=1, K=1) |
Tab.1 Structure of the encoder and decoder
Encoder | Decoder |
---|---|
C_1 (O=64, S=2, P=3, K=7) | D_1 (O=1024, S=2, K=2) |
C_2 (O=128, S=2, P=1, K=3) | D_2 (O=1024, S=1, K=1) |
C_3 (O=128, S=1, P=1, K=3) | D_3 (O=512, S=2, K=2) |
C_4 (O=256, S=2, P=1, K=3) | D_4 (O=512, S=1, K=1) |
C_5 (O=256, S=1, P=1, K=3) | D_5 (O=256, S=2, K=2) |
C_6 (O=512, S=2, P=1, K=3) | D_6 (O=256, S=1, K=1) |
C_7 (O=512, S=1, P=1, K=3) | D_7 (O=128, S=4, K=4) |
C_8 (O=1024, S=2, P=1, K=3) | D_8 (O=128, S=1, K=1) |
C_9 (O=1024, S=1, P=1, K=3) | D_9 (O=64, S=4, K=4) |
C_10 (O=2048, S=1, P=1, K=3) | D_10 (O=64, S=1, K=1) |
C_11 (O=2048, S=1, P=0, K=3) | D_11 (O=32, S=4, K=4) |
C_12 (O=2048, S=1, P=0, K=3) | D_12 (O=18, S=1, K=1) |
C_13 (O=2048, S=1, P=0, K=3) | D_13 (O=18, S=1, K=1) |
Patient | GRU-VAE | LSTM-VAE | 1DCNN-VAE | 1DCNN-AE |
---|---|---|---|---|
chb01 | 0.619 | 0.948 | 0.948 | 0.949 |
chb03 | 0.642 | 0.941 | 0.941 | 0.940 |
chb04 | 0.794 | 0.839 | 0.847 | 0.860 |
chb05 | 0.889 | 0.930 | 0.988 | 0.987 |
chb07 | 0.910 | 0.974 | 0.978 | 0.977 |
chb08 | 0.799 | 0.886 | 0.947 | 0.946 |
chb09 | 0.962 | 0.977 | 0.977 | 0.977 |
chb10 | 0.703 | 0.857 | 0.859 | 0.859 |
chb12 | 0.477 | 0.619 | 0.620 | 0.625 |
chb13 | 0.685 | 0.684 | 0.695 | 0.698 |
chb17 | 0.611 | 0.834 | 0.943 | 0.942 |
chb18 | 0.618 | 0.880 | 0.888 | 0.882 |
chb19 | 0.707 | 0.706 | 0.941 | 0.943 |
chb20 | 0.737 | 0.778 | 0.782 | 0.782 |
chb21 | 0.573 | 0.714 | 0.843 | 0.837 |
chb22 | 0.832 | 0.916 | 0.983 | 0.981 |
chb23 | 0.945 | 0.976 | 0.971 | 0.971 |
chb24 | 0.816 | 0.870 | 0.871 | 0.870 |
10591 | 0.698 | 0.703 | 0.730 | 0.727 |
10020 | 0.732 | 0.732 | 0.736 | 0.734 |
11077 | 0.550 | 0.568 | 0.585 | 0.588 |
08444 | 0.645 | 0.659 | 0.696 | 0.689 |
11580 | 0.599 | 0.654 | 0.688 | 0.693 |
Tab.2 Comparison of AUC among different methods on the CHB-MIT and the TUH
Patient | GRU-VAE | LSTM-VAE | 1DCNN-VAE | 1DCNN-AE |
---|---|---|---|---|
chb01 | 0.619 | 0.948 | 0.948 | 0.949 |
chb03 | 0.642 | 0.941 | 0.941 | 0.940 |
chb04 | 0.794 | 0.839 | 0.847 | 0.860 |
chb05 | 0.889 | 0.930 | 0.988 | 0.987 |
chb07 | 0.910 | 0.974 | 0.978 | 0.977 |
chb08 | 0.799 | 0.886 | 0.947 | 0.946 |
chb09 | 0.962 | 0.977 | 0.977 | 0.977 |
chb10 | 0.703 | 0.857 | 0.859 | 0.859 |
chb12 | 0.477 | 0.619 | 0.620 | 0.625 |
chb13 | 0.685 | 0.684 | 0.695 | 0.698 |
chb17 | 0.611 | 0.834 | 0.943 | 0.942 |
chb18 | 0.618 | 0.880 | 0.888 | 0.882 |
chb19 | 0.707 | 0.706 | 0.941 | 0.943 |
chb20 | 0.737 | 0.778 | 0.782 | 0.782 |
chb21 | 0.573 | 0.714 | 0.843 | 0.837 |
chb22 | 0.832 | 0.916 | 0.983 | 0.981 |
chb23 | 0.945 | 0.976 | 0.971 | 0.971 |
chb24 | 0.816 | 0.870 | 0.871 | 0.870 |
10591 | 0.698 | 0.703 | 0.730 | 0.727 |
10020 | 0.732 | 0.732 | 0.736 | 0.734 |
11077 | 0.550 | 0.568 | 0.585 | 0.588 |
08444 | 0.645 | 0.659 | 0.696 | 0.689 |
11580 | 0.599 | 0.654 | 0.688 | 0.693 |
Patient | GRU-VAE | LSTM-VAE | 1DCNN-VAE | 1DCNN-AE | ||||
---|---|---|---|---|---|---|---|---|
FAR | SDR | FAR | SDR | FAR | SDR | FAR | SDR | |
chb01 | 13 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
chb03 | 5.04 | 100 | 1.08 | 100 | 1.08 | 100 | 1.08 | 100 |
chb04 | 1.80 | 75 | 8.64 | 100 | 12.24 | 100 | 12.6 | 100 |
chb05 | 1.80 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
chb07 | 0.72 | 100 | 0.72 | 100 | 0.72 | 100 | 0.72 | 100 |
chb08 | 0 | 100 | 5.04 | 100 | 0 | 100 | 1.08 | 100 |
chb09 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
chb10 | 0 | 85.7 | 0 | 85.7 | 0 | 85.7 | 0 | 85.7 |
chb12 | 0 | 18.5 | 54.0 | 85.2 | 73.08 | 92.6 | 52.9 | 85.2 |
chb13 | 0 | 25 | 1.80 | 66.7 | 1.08 | 75 | 1.08 | 75 |
chb17 | 19.8 | 100 | 0 | 100 | 1.80 | 100 | 2.88 | 100 |
chb18 | 0 | 83.3 | 6.84 | 33.3 | 15.12 | 100 | 23.04 | 100 |
chb19 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
chb20 | 0 | 87.5 | 0 | 87.5 | 0 | 100 | 0 | 87.5 |
chb21 | 3.96 | 25 | 0 | 75 | 0 | 100 | 0 | 100 |
chb22 | 6.12 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
chb23 | 14.04 | 100 | 17.64 | 100 | 12.24 | 100 | 12.96 | 100 |
chb24 | 0 | 100 | 1.08 | 100 | 0 | 100 | 1.08 | 100 |
10591 | 0.011 | 85.4 | 0.011 | 87.5 | 0.033 | 87.5 | 0.044 | 100 |
10020 | 0.024 | 100 | 0.032 | 100 | 0.024 | 100 | 0.016 | 100 |
11077 | 0.058 | 70 | 0.029 | 70 | 0 | 70 | 0 | 70 |
08444 | 0 | 90.9 | 0 | 100 | 0 | 100 | 0 | 100 |
11580 | 0 | 100 | 0 | 94.4 | 0 | 100 | 0 | 100 |
Tab.3 Comparison of SDR and FAR among different methods on CHB-MIT dataset and TUH dataset
Patient | GRU-VAE | LSTM-VAE | 1DCNN-VAE | 1DCNN-AE | ||||
---|---|---|---|---|---|---|---|---|
FAR | SDR | FAR | SDR | FAR | SDR | FAR | SDR | |
chb01 | 13 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
chb03 | 5.04 | 100 | 1.08 | 100 | 1.08 | 100 | 1.08 | 100 |
chb04 | 1.80 | 75 | 8.64 | 100 | 12.24 | 100 | 12.6 | 100 |
chb05 | 1.80 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
chb07 | 0.72 | 100 | 0.72 | 100 | 0.72 | 100 | 0.72 | 100 |
chb08 | 0 | 100 | 5.04 | 100 | 0 | 100 | 1.08 | 100 |
chb09 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
chb10 | 0 | 85.7 | 0 | 85.7 | 0 | 85.7 | 0 | 85.7 |
chb12 | 0 | 18.5 | 54.0 | 85.2 | 73.08 | 92.6 | 52.9 | 85.2 |
chb13 | 0 | 25 | 1.80 | 66.7 | 1.08 | 75 | 1.08 | 75 |
chb17 | 19.8 | 100 | 0 | 100 | 1.80 | 100 | 2.88 | 100 |
chb18 | 0 | 83.3 | 6.84 | 33.3 | 15.12 | 100 | 23.04 | 100 |
chb19 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
chb20 | 0 | 87.5 | 0 | 87.5 | 0 | 100 | 0 | 87.5 |
chb21 | 3.96 | 25 | 0 | 75 | 0 | 100 | 0 | 100 |
chb22 | 6.12 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
chb23 | 14.04 | 100 | 17.64 | 100 | 12.24 | 100 | 12.96 | 100 |
chb24 | 0 | 100 | 1.08 | 100 | 0 | 100 | 1.08 | 100 |
10591 | 0.011 | 85.4 | 0.011 | 87.5 | 0.033 | 87.5 | 0.044 | 100 |
10020 | 0.024 | 100 | 0.032 | 100 | 0.024 | 100 | 0.016 | 100 |
11077 | 0.058 | 70 | 0.029 | 70 | 0 | 70 | 0 | 70 |
08444 | 0 | 90.9 | 0 | 100 | 0 | 100 | 0 | 100 |
11580 | 0 | 100 | 0 | 94.4 | 0 | 100 | 0 | 100 |
Model | Params | FLOPs |
---|---|---|
LSTM-VAE | 47.4M | 21.60G |
GRU-VAE | 36.9M | 16.20G |
1DCNN-VAE | 61.6M | 0.380G |
1DCNN-AE | 58.5M | 0.377G |
Tab.4 Comparison of the Params and FLOPs of different methods
Model | Params | FLOPs |
---|---|---|
LSTM-VAE | 47.4M | 21.60G |
GRU-VAE | 36.9M | 16.20G |
1DCNN-VAE | 61.6M | 0.380G |
1DCNN-AE | 58.5M | 0.377G |
1 | Hassan AR, Subasi A. Automatic identification of epileptic seizures from EEG signals using linear programming boosting[J]. Comput Methods Programs Biomed, 2016, 136: 65-77. |
2 | Mian Qaisar S, Subasi A. Effective epileptic seizure detection based on the event-driven processing and machine learning for mobile healthcare[J]. J Ambient Intell Humaniz Comput, 2022, 13(7): 3619-31. |
3 | Milligan TA. Epilepsy: a clinical overview[J]. Am J Med, 2021, 134(7): 840-7. |
4 | Shoeibi A, Khodatars M, Ghassemi N, et al. Epileptic seizures detection using deep learning techniques: a review[J]. Int J Environ Res Public Health, 2021, 18(11): 5780. |
5 | Zhang S, Liu GD, Xiao RL, et al. A combination of statistical parameters for epileptic seizure detection and classification using VMD and NLTWSVM[J]. Biocybern Biomed Eng, 2022, 42(1): 258-72. |
6 | Vijay Anand S, Shantha Selvakumari R. Noninvasive method of epileptic detection using DWT and generalized regression neural network[J]. Soft Comput, 2019, 23(8): 2645-53. |
7 | Sameer M, Gupta B. Time–frequency statistical features of delta band for detection of epileptic seizures[J]. Wirel Pers Commun, 2022, 122(1): 489-99. |
8 | Riaz F, Hassan A, Rehman S, et al. EMD-based temporal and spectral features for the classification of EEG signals using supervised learning[J]. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(1): 28-35. |
9 | Acharya UR, Molinari F, Sree SV, et al. Automated diagnosis of epileptic EEG using entropies[J]. Biomed Signal Process Contr, 2012, 7(4): 401-8. |
10 | Xiang J, Li CG, Li HF, et al. The detection of epileptic seizure signals based on fuzzy entropy[J]. J Neurosci Methods, 2015, 243: 18-25. |
11 | Jouny CC, Bergey GK. Characterization of early partial seizure onset: frequency, complexity and entropy[J]. Clin Neurophysiol, 2012, 123(4): 658-69. |
12 | Osowski S, Swiderski B, Cichocki A, et al. Epileptic seizure characterization by Lyapunov exponent of EEG signal[J]. COMPEL Int J Comput Math Electr Electron Eng, 2007, 26(5): 1276-87. |
13 | Sharma M, Pachori RB, Rajendra Acharya U. A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension[J]. Pattern Recognit Lett, 2017, 94: 172-9. |
14 | Aarabi A, He B. Seizure prediction in patients with focal hippocampal epilepsy[J]. Clin Neurophysiol, 2017, 128(7): 1299-307. |
15 | C SKR, M S. A 1-D CNN-FCM model for the classification of epileptic seizure disorders[J]. Neural Comput Appl, 2023, 35(24): 17871-81. |
16 | Tian XB, Deng ZH, Ying WH, et al. Deep multi-view feature learning for EEG-based epileptic seizure detection[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(10): 1962-72. |
17 | 廖家慧, 李涵懿, 詹长安, 等. 癫痫发作预测模型: 斯托克韦尔变换的生成对抗与长短时记忆网络半监督方法[J]. 南方医科大学学报, 2023, 43(1): 17-28. |
18 | Yu JH, Gao X, Li BF, et al. A filter-augmented auto-encoder with learnable normalization for robust multivariate time series anomaly detection[J]. Neural Netw, 2024, 170: 478-93. |
19 | Fan J, Liu ZT, Wu HF, et al. LUAD: a lightweight unsupervised anomaly detection scheme for multivariate time series data[J]. Neurocomputing, 2023, 557: 126644. |
20 | Enayati E, Mortazavi R, Basiri A, et al. Time series anomaly detection via clustering-based representation[J]. Evol Syst, 2024, 15(4): 1115-36. |
21 | Zhu W, Li WJ, Dorsey ER, et al. Unsupervised anomaly detection by densely contrastive learning for time series data[J]. Neural Netw, 2023, 168: 450-8. |
22 | Emami A, Kunii N, Matsuo T, et al. Autoencoding of long-term scalp electroencephalogram to detect epileptic seizure for diagnosis support system[J]. Comput Biol Med, 2019, 110: 227-33. |
23 | You S, Cho BH, Yook S, et al. Unsupervised automatic seizure detection for focal-onset seizures recorded with behind-the-ear EEG using an anomaly-detecting generative adversarial network[J]. Comput Methods Programs Biomed, 2020, 193: 105472. |
24 | You S, Cho BH, Shon YM, et al. Semi-supervised automatic seizure detection using personalized anomaly detecting variational autoencoder with behind-the-ear EEG[J]. Comput Methods Programs Biomed, 2022, 213: 106542. |
25 | 中国抗癫痫协会脑电图和神经电生理分会. 视频脑电图基本技术标准[J]. 癫痫杂志, 2022, 8(1): 17-8. |
26 | Zhao YN, Zhang GB, Zhang YF, et al. Multi-view cross-subject seizure detection with information bottleneck attribution[J]. J Neural Eng, 2022, 19(4): 46011. |
27 | Rasheed K, Qayyum A, Qadir J, et al. Machine learning for predicting epileptic seizures using EEG signals: a review[J]. IEEE Rev Biomed Eng, 2021, 14: 139-55. |
28 | Kingma D P, Welling M.Auto-Encoding Variational Bayes[J].arXiv.org, 2014.DOI:10.48550/arXiv.1312.6114 . |
29 | Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. 2014: arXiv: 1406.2661. |
30 | 谭宏卫, 周林勇, 王国栋, 等. 生成式对抗网络的不稳定性分析及其处理技术[J]. 中国科学: 信息科学, 2021, 51(4): 602-17. |
31 | Zenati H, Foo C S, Lecouat B, et al. Efficient GAN-Based Anomaly Detection[J]. 2018.DOI:10.48550/arXiv.1802.06222 . |
32 | Schlegl T, Seeböck P, Waldstein SM, et al. F-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks[J]. Med Image Anal, 2019, 54: 30-44. |
33 | Qiu XJ, Yan F, Liu HH. A difference attention ResNet-LSTM network for epileptic seizure detection using EEG signal[J]. Biomed Signal Process Contr, 2023, 83: 104652. |
34 | Saichand NV, Gopiya Naik S. Epileptic seizure detection using novel Multilayer LSTM Discriminant Network and dynamic mode Koopman decomposition[J]. Biomed Signal Process Contr, 2021, 68: 102723. |
35 | Hu XM, Yuan SS, Xu FZ, et al. Scalp EEG classification using deep Bi-LSTM network for seizure detection[J]. Comput Biol Med, 2020, 124: 103919. |
36 | Chung J, Gulcehre C, Cho K H,et al.Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[J].Eprint Arxiv, 2014.DOI:10.48550/arXiv.1412.3555 . |
[1] | Weiyang FANG, Hui XIAO, Shuang WANG, Xiaoming LIN, Chaomin CHEN. A deep learning model based on magnetic resonance imaging and clinical feature fusion for predicting preoperative cytokeratin 19 status in hepatocellular carcinoma [J]. Journal of Southern Medical University, 2024, 44(9): 1738-1751. |
[2] | Chen WANG, Mingqiang MENG, Mingqiang LI, Yongbo WANG, Dong ZENG, Zhaoying BIAN, Jianhua MA. Reconstruction from CT truncated data based on dual-domain transformer coupled feature learning [J]. Journal of Southern Medical University, 2024, 44(5): 950-959. |
[3] | LONG Kaixing, WENG Danyi, GENG Jian, LU Yanmeng, ZHOU Zhitao, CAO Lei. Automatic classification of immune-mediated glomerular diseases based on multi-modal multi-instance learning [J]. Journal of Southern Medical University, 2024, 44(3): 585-593. |
[4] | XIAO Hui, FANG Weiyang, LIN Mingjun, ZHOU Zhenzhong, FEI Hongwen, CHEN Chaomin. A multiscale carotid plaque detection method based on two-stage analysis [J]. Journal of Southern Medical University, 2024, 44(2): 387-396. |
[5] | MI Jia, ZHOU Yujia, FENG Qianjin. A 3D/2D registration method based on reconstruction of orthogonal-view Xray images [J]. Journal of Southern Medical University, 2023, 43(9): 1636-1643. |
[6] | CHU Zhiqin, QU Yaoming, ZHONG Tao, LIANG Shujun, WEN Zhibo, ZHANG Yu. A Dual-Aware deep learning framework for identification of glioma isocitrate dehydrogenase genotype using magnetic resonance amide proton transfer modalities [J]. Journal of Southern Medical University, 2023, 43(8): 1379-1387. |
[7] | YU Jiahong, ZHANG Kunpeng, JIN Shuang, SU Zhe, XU Xiaotong, ZHANG Hua. Sinogram interpolation combined with unsupervised image-to-image translation network for CT metal artifact correction [J]. Journal of Southern Medical University, 2023, 43(7): 1214-1223. |
[8] | ZHOU Hao, ZENG Dong, BIAN Zhaoying, MA Jianhua. A semi-supervised network-based tissue-aware contrast enhancement method for CT images [J]. Journal of Southern Medical University, 2023, 43(6): 985-993. |
[9] | TENG Lin, WANG Bin, FENG Qianjin. Deep learning-based dose prediction in radiotherapy planning for head and neck cancer [J]. Journal of Southern Medical University, 2023, 43(6): 1010-1016. |
[10] | WU Xueyang, ZHANG Yu, ZHANG Hua, ZHONG Tao. Whole-brain parcellation for macaque brain magnetic resonance images based on attention mechanism and multi-modality feature fusion [J]. Journal of Southern Medical University, 2023, 43(12): 2118-2125. |
[11] | HE Fawei, WANG Yongbo, TAO Xi, ZHU Manman, HONG Zixuan, BIAN Zhaoying, MA Jianhua. Low-dose helical CT projection data restoration using noise estimation [J]. Journal of Southern Medical University, 2022, 42(6): 849-859. |
[12] | WANG Lei, WANG Yongbo, BIAN Zhaoying, MA Jianhua, HUANG Jing. A nonlocal spectral similarity-induced material decomposition method for noise reduction of dual-energy CT images [J]. Journal of Southern Medical University, 2022, 42(5): 724-732. |
[13] | FU Shuai, LI Mingqiang, BIAN Zhaoying, MA Jianhua. Performance of low-dose CT image reconstruction for detecting intracerebral hemorrhage: selection of dose, algorithms and their combinations [J]. Journal of Southern Medical University, 2022, 42(2): 223-231. |
[14] | ZHANG Kunpeng, YU Jiahong, JIN Shuang, SU Zhe, XU Xiaotong, ZHANG Hua. Prediction of respiratory motion based on sequential embedding combined with relational embedding [J]. Journal of Southern Medical University, 2022, 42(12): 1858-1866. |
[15] | SI Wenbin, FENG Yanqiu. A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping [J]. Journal of Southern Medical University, 2022, 42(12): 1799-1806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||