Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (5): 950-959.doi: 10.12122/j.issn.1673-4254.2024.05.17
• Techniques and Methods • Previous Articles Next Articles
Chen WANG1,2(), Mingqiang MENG1,2, Mingqiang LI2, Yongbo WANG1,2, Dong ZENG1,2, Zhaoying BIAN1,2, Jianhua MA1,2(
)
Received:
2023-10-31
Online:
2024-05-20
Published:
2024-06-06
Contact:
Jianhua MA
E-mail:wangchen9909@outlook.com;jhma@smu.edu.cn
Supported by:
Chen WANG, Mingqiang MENG, Mingqiang LI, Yongbo WANG, Dong ZENG, Zhaoying BIAN, Jianhua MA. Reconstruction from CT truncated data based on dual-domain transformer coupled feature learning[J]. Journal of Southern Medical University, 2024, 44(5): 950-959.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.05.17
Fig.1 Illustration of truncation artifacts of the projection data collected under two truncation conditions, the reconstructed images and profiles comparison with the non-truncated image at the position marked by red solid line (the vertical dashed lines represent the truncation boundaries). A: Partial truncation at the patient's shoulder. B: Cardiac interior scanning.
Fig.3 Comparison of truncation artifacts correction results with different methods for partial truncation data. The display window is [-200, 200]HU. The second and fourth rows are absolute residual images of different algorithm results with respect to the ground truth.
Methods | RMSE | SSIM | PSNR | |||
---|---|---|---|---|---|---|
Inside FOV | Outside FOV | Inside FOV | Outside FOV | Inside FOV | Outside FOV | |
FBP | 189.0240 | 269.5267 | 0.9134 | 0.5618 | 18.9133 | 4.3666 |
ATRACT | 62.8714 | 234.9390 | 0.9290 | 0.6436 | 29.4219 | 7.0502 |
WCE | 26.1827 | 152.8316 | 0.9628 | 0.7531 | 38.0734 | 9.5631 |
ES-UNet | 40.6024 | 155.7068 | 0.9458 | 0.8858 | 33.2551 | 9.2289 |
OneNetDBP | 61.3758 | 158.5035 | 0.8821 | 0.8530 | 27.1814 | 9.2492 |
DGAN | 22.0072 | 138.6643 | 0.9837 | 0.8917 | 41.8713 | 10.3352 |
DDTrans | 5.4097 | 116.9005 | 0.9991 | 0.9250 | 52.4910 | 12.0010 |
Tab.1 Comparison of quantitative results of different methods for partial truncation data
Methods | RMSE | SSIM | PSNR | |||
---|---|---|---|---|---|---|
Inside FOV | Outside FOV | Inside FOV | Outside FOV | Inside FOV | Outside FOV | |
FBP | 189.0240 | 269.5267 | 0.9134 | 0.5618 | 18.9133 | 4.3666 |
ATRACT | 62.8714 | 234.9390 | 0.9290 | 0.6436 | 29.4219 | 7.0502 |
WCE | 26.1827 | 152.8316 | 0.9628 | 0.7531 | 38.0734 | 9.5631 |
ES-UNet | 40.6024 | 155.7068 | 0.9458 | 0.8858 | 33.2551 | 9.2289 |
OneNetDBP | 61.3758 | 158.5035 | 0.8821 | 0.8530 | 27.1814 | 9.2492 |
DGAN | 22.0072 | 138.6643 | 0.9837 | 0.8917 | 41.8713 | 10.3352 |
DDTrans | 5.4097 | 116.9005 | 0.9991 | 0.9250 | 52.4910 | 12.0010 |
Fig.5 Comparison of truncation artifacts correction results with different methods for interior scanning. The display window is [-200, 200]HU. The second and fourth rows are absolute residual images of different algorithm results with respect to the ground truth.
Methods | RMSE | SSIM | PSNR | |||
---|---|---|---|---|---|---|
Inside FOV | Outside FOV | Inside FOV | Outside FOV | Inside FOV | Outside FOV | |
FBP | 488.4375 | 556.6830 | 0.6466 | 0.2275 | 7.5358 | 7.0234 |
ATRACT | 62.3716 | 287.6859 | 0.8911 | 0.5542 | 25.8800 | 13.1452 |
WCE | 37.0367 | 225.5691 | 0.8819 | 0.5915 | 32.9671 | 14.9137 |
ES-UNet | 54.7751 | 226.6859 | 0.8906 | 0.8062 | 29.2464 | 14.8481 |
OneNetDBP | 48.7271 | 219.1173 | 0.8279 | 0.7781 | 26.1069 | 15.2767 |
DGAN | 29.6017 | 201.8265 | 0.9537 | 0.7769 | 33.4705 | 15.4285 |
DDTrans | 8.0043 | 174.9918 | 0.9836 | 0.8317 | 42.9410 | 17.0266 |
Tab.2 Comparison of quantitative results of different methods for interior scanning data
Methods | RMSE | SSIM | PSNR | |||
---|---|---|---|---|---|---|
Inside FOV | Outside FOV | Inside FOV | Outside FOV | Inside FOV | Outside FOV | |
FBP | 488.4375 | 556.6830 | 0.6466 | 0.2275 | 7.5358 | 7.0234 |
ATRACT | 62.3716 | 287.6859 | 0.8911 | 0.5542 | 25.8800 | 13.1452 |
WCE | 37.0367 | 225.5691 | 0.8819 | 0.5915 | 32.9671 | 14.9137 |
ES-UNet | 54.7751 | 226.6859 | 0.8906 | 0.8062 | 29.2464 | 14.8481 |
OneNetDBP | 48.7271 | 219.1173 | 0.8279 | 0.7781 | 26.1069 | 15.2767 |
DGAN | 29.6017 | 201.8265 | 0.9537 | 0.7769 | 33.4705 | 15.4285 |
DDTrans | 8.0043 | 174.9918 | 0.9836 | 0.8317 | 42.9410 | 17.0266 |
Fig.6 Ablation experiment results of single projection domain network (S-Net), single image domain network (I-Net), dual domain network without projection consistency constraint layer (w/o PC) and DDTrans. The display window is [-200, 200]HU.
Methods | RMSE | SSIM | PSNR | |||
---|---|---|---|---|---|---|
Inside FOV | Outside FOV | Inside FOV | Outside FOV | Inside FOV | Outside FOV | |
S-Net | 6.5405 | 120.0671 | 0.9982 | 0.8898 | 49.0927 | 11.5285 |
I-Net | 11.3366 | 130.1608 | 0.9965 | 0.9124 | 41.9385 | 10.7919 |
w/o PC | 6.5004 | 117.1258 | 0.9989 | 0.9232 | 50.4997 | 11.7845 |
DDTrans | 5.4079 | 116.9005 | 0.9991 | 0.9250 | 52.4910 | 12.0010 |
Tab.3 Quantitative comparison of ablation experimental results
Methods | RMSE | SSIM | PSNR | |||
---|---|---|---|---|---|---|
Inside FOV | Outside FOV | Inside FOV | Outside FOV | Inside FOV | Outside FOV | |
S-Net | 6.5405 | 120.0671 | 0.9982 | 0.8898 | 49.0927 | 11.5285 |
I-Net | 11.3366 | 130.1608 | 0.9965 | 0.9124 | 41.9385 | 10.7919 |
w/o PC | 6.5004 | 117.1258 | 0.9989 | 0.9232 | 50.4997 | 11.7845 |
DDTrans | 5.4079 | 116.9005 | 0.9991 | 0.9250 | 52.4910 | 12.0010 |
Fig.7 Comparison of the generalization capabilities of different algorithms on shoulder data. The head data display window is [-500, 500]HU. The second and fourth rows are absolute residual images of different algorithm results with respect to the ground truth.
Methods | RMSE | SSIM | PSNR | |||
---|---|---|---|---|---|---|
Inside FOV | Outside FOV | Inside FOV | Outside FOV | Inside FOV | Outside FOV | |
FBP | 341.9528 | 460.3208 | 0.6594 | 0.5833 | 14.7162 | 9.5040 |
ATRACT | 100.3245 | 261.8279 | 0.8597 | 0.7811 | 24.1792 | 13.2714 |
WCE | 22.6755 | 187.2308 | 0.9611 | 0.8212 | 41.6179 | 16.1640 |
ES-UNet | 36.4977 | 149.5005 | 0.9148 | 0.8647 | 40.7829 | 16.2713 |
OneNetDBP | 108.2811 | 159.9267 | 0.8676 | 0.8098 | 23.5470 | 15.7454 |
DGAN | 19.9203 | 174.9319 | 0.9800 | 0.8205 | 41.3990 | 15.4051 |
DDTrans | 16.9099 | 144.0732 | 0.9897 | 0.8891 | 42.4004 | 16.7163 |
Tab.4 Quantitative comparison of generalization capabilities of different methods.
Methods | RMSE | SSIM | PSNR | |||
---|---|---|---|---|---|---|
Inside FOV | Outside FOV | Inside FOV | Outside FOV | Inside FOV | Outside FOV | |
FBP | 341.9528 | 460.3208 | 0.6594 | 0.5833 | 14.7162 | 9.5040 |
ATRACT | 100.3245 | 261.8279 | 0.8597 | 0.7811 | 24.1792 | 13.2714 |
WCE | 22.6755 | 187.2308 | 0.9611 | 0.8212 | 41.6179 | 16.1640 |
ES-UNet | 36.4977 | 149.5005 | 0.9148 | 0.8647 | 40.7829 | 16.2713 |
OneNetDBP | 108.2811 | 159.9267 | 0.8676 | 0.8098 | 23.5470 | 15.7454 |
DGAN | 19.9203 | 174.9319 | 0.9800 | 0.8205 | 41.3990 | 15.4051 |
DDTrans | 16.9099 | 144.0732 | 0.9897 | 0.8891 | 42.4004 | 16.7163 |
Methods | FBP | ATRACT | WCE | ES-UNet | OneNetDBP | DGAN | DDTrans |
---|---|---|---|---|---|---|---|
Time-consumption (s) | 85.7 | 111.3 | 93.9 | 63.5 | 353.5 | 114.1 | 40.6 |
Tab.5 Comparison of time consumption of different methods for reconstructing 526 images
Methods | FBP | ATRACT | WCE | ES-UNet | OneNetDBP | DGAN | DDTrans |
---|---|---|---|---|---|---|---|
Time-consumption (s) | 85.7 | 111.3 | 93.9 | 63.5 | 353.5 | 114.1 | 40.6 |
1 | 曾更生. 医学图像重建[M]. 北京: 高等教育出版社, 2010. |
2 | Fan FX, Kreher B, Keil H, et al. Fiducial marker recovery and detection from severely truncated data in navigation-assisted spine surgery[J]. Med Phys, 2022, 49(5): 2914-30. DOI: 10.1002/mp.15617 |
3 | Wang G, Yu HY, De Man B. An outlook on X-ray CT research and development[J]. Med Phys, 2008, 35(3): 1051-64. DOI: 10.1118/1.2836950 |
4 | Kudo H, Suzuki T, Rashed EA. Image reconstruction for sparse-view CT and interior CT-introduction to compressed sensing and differentiated backprojection[J]. Quant Imaging Med Surg, 2013, 3(3): 147-61. DOI: 10.3978/j.issn.2223-4292.2013.06.01 |
5 | Ohnesorge B, Flohr T, Schwarz K, et al. Efficient correction for CT image artifacts caused by objects extending outside the scan field of view[J]. Med Phys, 2000, 27(1): 39-46. DOI: 10.1118/1.598855 |
6 | Hsieh J, Chao E, Thibault J, et al. A novel reconstruction algorithm to extend the CT scan field-of-view[J]. Med Phys, 2004, 31(9): 2385-91. DOI: 10.1118/1.1776673 |
7 | Sourbelle K, Kachelriess M, Kalender WA. Reconstruction from truncated projections in CT using adaptive detruncation[J]. Eur Radiol, 2005, 15(5): 1008-14. DOI: 10.1007/s00330-004-2621-9 |
8 | Noo F, Clackdoyle R, Pack JD. A two-step Hilbert transform method for 2D image reconstruction[J]. Phys Med Biol, 2004, 49(17): 3903-23. DOI: 10.1088/0031-9155/49/17/006 |
9 | Kudo H, Courdurier M, Noo F, et al. Tiny a priori knowledge solves the interior problem in computed tomography[J]. Phys Med Biol, 2008, 53(9): 2207-31. DOI: 10.1088/0031-9155/53/9/001 |
10 | Courdurier M, Noo F, Defrise M, et al. Solving the interior problem of computed tomography using a priori knowledge[J]. Inverse Probl, 2008, 24(6): 065001. DOI: 10.1088/0266-5611/24/6/065001 |
11 | Coussat A, Rit S, Clackdoyle R, et al. Region-of-interest CT reconstruction using object extent and singular value decomposition[J]. IEEE Trans Radiat Plasma Med Sci, 2022, 6(5): 537-51. DOI: 10.1109/trpms.2021.3091288 |
12 | Xia Y, Hofmann H, Dennerlein F, et al. Towards clinical application of a Laplace operator-based region of interest reconstruction algorithm in C-arm CT[J]. IEEE Trans Med Imaging, 2014, 33(3): 593-606. DOI: 10.1109/tmi.2013.2291622 |
13 | Han WM, Yu HY, Wang G. A general total variation minimization theorem for compressed sensing based interior tomography[J]. J Biomed Imag, 2009, 2009: 21. DOI: 10.1155/2009/125871 |
14 | Yang JS, Yu HY, Jiang M, et al. High-order total variation minimization for interior tomography[J]. Inverse Probl, 2010, 26(3): 035013. DOI: 10.1088/0266-5611/26/3/035013 |
15 | Yu HY, Wang G. Compressed sensing based interior tomography[J]. Phys Med Biol, 2009, 54(9): 2791-805. DOI: 10.1088/0031-9155/54/9/014 |
16 | Han Y, Ye JC. One network to solve all ROIs: deep learning CT for any ROI using differentiated backprojection[J]. Med Phys, 2019, 46(12): e855-e872. DOI: 10.1002/mp.13631 |
17 | Li YS, Li K, Zhang CZ, et al. Learning to reconstruct computed tomography images directly from sinogram data under A variety of data acquisition conditions[J]. IEEE Trans Med Imaging, 2019, 38(10): 2469-81. DOI: 10.1109/tmi.2019.2910760 |
18 | Fournié É, Baer-Beck M, Stierstorfer K. CT field of view extension using combined channels extension and deep learning methods[J]. arXiv preprint, arXiv:1908.09529, 2019, |
19 | Huang YX, Preuhs A, Manhart M, et al. Data extrapolation from learned prior images for truncation correction in computed tomography[J]. IEEE Trans Med Imaging, 2021, 40(11): 3042-53. DOI: 10.1109/tmi.2021.3072568 |
20 | Shamshad F, Khan S, Zamir SW, et al. Transformers in medical imaging: a survey[J]. Med Image Anal, 2023, 88: 102802. DOI: 10.1016/j.media.2023.102802 |
21 | Guo Y, Chen J, Wang JD, et al. Closed-loop matters: dual regression networks for single image super-resolution[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020. Seattle, WA, USA. IEEE, 2020: 5047-16. DOI: 10.1109/cvpr42600.2020.00545 |
22 | Ronchetti M. TorchRadon: fast differentiable routines for computed tomography[J]. arXiv preprint arXiv:2009.14788, 2020 |
23 | Zamir SW, Arora A, Khan S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022. New Orleans, LA, USA. IEEE, 2022: 5278-39. DOI: 10.1109/cvpr52688.2022.00564 |
24 | AAPM. Low dose CT grand challenge[EB/OL]. , 2017. |
25 | Moen TR, Chen BY, Holmes DR 3rd, et al. Low-dose CT image and projection dataset[J]. Med Phys, 2021, 48(2): 902-11. DOI: 10.1002/mp.14594 |
26 | Paszke A, Gross S, Chintala S, et al. Automatic differentiation in PyTorch[C]. Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, USA, 2017. |
27 | Cheung JP, Shugard E, Mistry N, et al. Evaluating the impact of extended field-of-view CT reconstructions on CT values and dosimetric accuracy for radiation therapy[J]. Med Phys, 2019, 46(2): 892-901. DOI: 10.1002/mp.13299 |
28 | Fonseca GP, Baer-Beck M, Fournie E, et al. Evaluation of novel AI-based extended field-of-view CT reconstructions[J]. Med Phys, 2021, 48(7): 3583-94. DOI: 10.1002/mp.14937 |
29 | Wallace N, Schaffer NE, Freedman BA, et al. Computer-assisted navigation in complex cervical spine surgery: tips and tricks[J]. J Spine Surg, 2020, 6(1): 136-44. DOI: 10.21037/jss.2019.11.13 |
[1] | LONG Kaixing, WENG Danyi, GENG Jian, LU Yanmeng, ZHOU Zhitao, CAO Lei. Automatic classification of immune-mediated glomerular diseases based on multi-modal multi-instance learning [J]. Journal of Southern Medical University, 2024, 44(3): 585-593. |
[2] | XIAO Hui, FANG Weiyang, LIN Mingjun, ZHOU Zhenzhong, FEI Hongwen, CHEN Chaomin. A multiscale carotid plaque detection method based on two-stage analysis [J]. Journal of Southern Medical University, 2024, 44(2): 387-396. |
[3] | HUANG Pinyu, ZHONG Liming, ZHENG Kaiyi, CHEN Zeli, XIAO Ruolin, QUAN Xianyue, YANG Wei. Multi-phase CT synthesis-assisted segmentation of abdominal organs [J]. Journal of Southern Medical University, 2024, 44(1): 83-92. |
[4] | MI Jia, ZHOU Yujia, FENG Qianjin. A 3D/2D registration method based on reconstruction of orthogonal-view Xray images [J]. Journal of Southern Medical University, 2023, 43(9): 1636-1643. |
[5] | CHU Zhiqin, QU Yaoming, ZHONG Tao, LIANG Shujun, WEN Zhibo, ZHANG Yu. A Dual-Aware deep learning framework for identification of glioma isocitrate dehydrogenase genotype using magnetic resonance amide proton transfer modalities [J]. Journal of Southern Medical University, 2023, 43(8): 1379-1387. |
[6] | YU Jiahong, ZHANG Kunpeng, JIN Shuang, SU Zhe, XU Xiaotong, ZHANG Hua. Sinogram interpolation combined with unsupervised image-to-image translation network for CT metal artifact correction [J]. Journal of Southern Medical University, 2023, 43(7): 1214-1223. |
[7] | ZHOU Hao, ZENG Dong, BIAN Zhaoying, MA Jianhua. A semi-supervised network-based tissue-aware contrast enhancement method for CT images [J]. Journal of Southern Medical University, 2023, 43(6): 985-993. |
[8] | TENG Lin, WANG Bin, FENG Qianjin. Deep learning-based dose prediction in radiotherapy planning for head and neck cancer [J]. Journal of Southern Medical University, 2023, 43(6): 1010-1016. |
[9] | WU Xueyang, ZHANG Yu, ZHANG Hua, ZHONG Tao. Whole-brain parcellation for macaque brain magnetic resonance images based on attention mechanism and multi-modality feature fusion [J]. Journal of Southern Medical University, 2023, 43(12): 2118-2125. |
[10] | HE Fawei, WANG Yongbo, TAO Xi, ZHU Manman, HONG Zixuan, BIAN Zhaoying, MA Jianhua. Low-dose helical CT projection data restoration using noise estimation [J]. Journal of Southern Medical University, 2022, 42(6): 849-859. |
[11] | WANG Lei, WANG Yongbo, BIAN Zhaoying, MA Jianhua, HUANG Jing. A nonlocal spectral similarity-induced material decomposition method for noise reduction of dual-energy CT images [J]. Journal of Southern Medical University, 2022, 42(5): 724-732. |
[12] | FU Shuai, LI Mingqiang, BIAN Zhaoying, MA Jianhua. Performance of low-dose CT image reconstruction for detecting intracerebral hemorrhage: selection of dose, algorithms and their combinations [J]. Journal of Southern Medical University, 2022, 42(2): 223-231. |
[13] | ZHANG Kunpeng, YU Jiahong, JIN Shuang, SU Zhe, XU Xiaotong, ZHANG Hua. Prediction of respiratory motion based on sequential embedding combined with relational embedding [J]. Journal of Southern Medical University, 2022, 42(12): 1858-1866. |
[14] | SI Wenbin, FENG Yanqiu. A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping [J]. Journal of Southern Medical University, 2022, 42(12): 1799-1806. |
[15] | HUANG Jinhong, ZHOU Genjiao, YU Zefeng, HU Wenyu. Deep parallel MRI reconstruction based on a complex-valued loss function [J]. Journal of Southern Medical University, 2022, 42(12): 1755-1764. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||