Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (5): 885-893.doi: 10.12122/j.issn.1673-4254.2024.05.10
• Basic Research • Previous Articles Next Articles
Nan WANG1(), Bin SHI2, Xiaolan MAN1, Weichao WU3, Jia CAO4(
)
Received:
2023-12-27
Online:
2024-05-20
Published:
2024-06-06
Contact:
Jia CAO
E-mail:979377808@qq.com;caojiamed@126.com
Nan WANG, Bin SHI, Xiaolan MAN, Weichao WU, Jia CAO. High expression of fragile X mental retardation protein inhibits ferroptosis of colorectal tumor cells by activating the RAS/MAPK signaling pathway[J]. Journal of Southern Medical University, 2024, 44(5): 885-893.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.05.10
Gene | Sense (5'-3') | Antisense (5'-3') |
---|---|---|
hFMR1-1 | GAGGAUGAUAAAGGGUGAGUUTT | AACUCACCCUUUAUCAUCCUCTT |
hFMR1-2 | CGAGAUUUCAUGAACAGUUUATT | UAAACUGUUCAUGAAAUCUCGTT |
hFMR1-3 | GCGUUUGGAGAGAUUACAAAUTT | AUUUGUAAUCUCUCCAAACGCTT |
Tab.1 Sequences of the small interfering RNAs
Gene | Sense (5'-3') | Antisense (5'-3') |
---|---|---|
hFMR1-1 | GAGGAUGAUAAAGGGUGAGUUTT | AACUCACCCUUUAUCAUCCUCTT |
hFMR1-2 | CGAGAUUUCAUGAACAGUUUATT | UAAACUGUUCAUGAAAUCUCGTT |
hFMR1-3 | GCGUUUGGAGAGAUUACAAAUTT | AUUUGUAAUCUCUCCAAACGCTT |
Antibody name | Company | Dilution rate |
---|---|---|
Anti-GAPDH | Cell Signaling technology | 1∶1000 |
Anti-FMRP | Abcam | 1∶1000 |
Anti-HO-1 | Abmart | 1∶1000 |
Anti-GPX4 | Abmart | 1∶1000 |
Anti-SLC7A11 | Abmart | 1∶1000 |
Anti-ERK | Cell signaling technology | 1∶1000 |
Anti-p-ERK | Cell signaling technology | 1∶1000 |
Anti-MAPK | Cell signaling technology | 1∶500 |
Anti-p-MAPK | Cell signaling technology | 1∶1000 |
Anti-RAS | Cell signaling technology | 1∶500 |
Anti-p-RAS | Cell signaling technology | 1∶500 |
Anti-MEK | Cell signaling technology | 1∶1000 |
Anti-p-MRK | Cell signaling technology | 1∶1000 |
Tab.2 Antibody information
Antibody name | Company | Dilution rate |
---|---|---|
Anti-GAPDH | Cell Signaling technology | 1∶1000 |
Anti-FMRP | Abcam | 1∶1000 |
Anti-HO-1 | Abmart | 1∶1000 |
Anti-GPX4 | Abmart | 1∶1000 |
Anti-SLC7A11 | Abmart | 1∶1000 |
Anti-ERK | Cell signaling technology | 1∶1000 |
Anti-p-ERK | Cell signaling technology | 1∶1000 |
Anti-MAPK | Cell signaling technology | 1∶500 |
Anti-p-MAPK | Cell signaling technology | 1∶1000 |
Anti-RAS | Cell signaling technology | 1∶500 |
Anti-p-RAS | Cell signaling technology | 1∶500 |
Anti-MEK | Cell signaling technology | 1∶1000 |
Anti-p-MRK | Cell signaling technology | 1∶1000 |
Fig.1 Expression levels of FMRP in colorectal cancer (CRC) cell lines and tissues. A: RT-PCR for detecting the expression of FMRP in different CRC cell lines. B: Western blotting for detecting FMRP protein expression in different CRC cell lines. C: Expression of FMRP in colorectal cancer tissues and normal tissues. D: Relationship between FMRP expression and disease-free survival of CRC patients. *P<0.05 vs NCM460 group.
Fig.2 Bioinformatic analysis of biological functions and signaling pathways enriched in FMRP. A: Two groups of differential genes. B: Up-regulated and down-regulated differential genes. C: GO functional enrichment bands. D: GSEA-GO enrichment analysis. E: Circular enrichment map of differential genes in iron ion homeostasis. F: GSEA-KEGG analysis map.
Fig.3 Effect of FMRP knockdown or overexpression on HCT116 cell proliferation. A: Western blotting for verifying the efficiency of FMRP knockdown or overexpression. B: RT-PCR of FMRP mRNA expression in HCT116 cells. C: CCK8 assay of the proliferation of the transfected HCT116 cells. D: Plate clone formation assay of cell proliferation. *P<0.05, **P<0.01 vs Control or Lv-NC group.
Fig.4 Effect of FMRP knockdown or overexpression on ferroptosis of HCT116 cells. A: GSH contents in transfected HCT116 cells. B: MDA contents in the transfected cells. C: ROS level in the transfected cells. D: Fe2+ level in the transfected cells (scale bar=50 μm). E: Western blots of the ferroptosis markers in the transfected cells. F: Immunofluorescence detection of SLC7A11 in HCT116 cells with FMRP knockdown (scale bar=20 μm). G: Immunofluorescence detection of mitochondrial membrane potential in HCT116 cells with FMRP knockdown (scale bar=20 μm). *P<0.05, **P<0.01 vs Control or Lv-NC group.
Fig.5 Effect of FMRP knockdown on growth of transplanted tumor in nude mice. A: The size of subcutaneously transplanted tumor in nude mice. B: Changes in tumor weight in nude mice. C: Changes in tumor volume in nude mice. D: Immunohistochemistry for FMRP and SLC7A11 in the tumor tissue (scale bar=250 μm). *P<0.05, **P<0.01 vs Control.
Fig.6 Effect of FMRP knockdown or overexpression on RAS/MAPK signaling pathway in HCT116 cells detected by Western blotting. *P<0.05, **P<0.01 vs Control or Lv-NC group.
1 | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. DOI: 10.3322/caac.21660 |
2 | Chudy-Onwugaje K, Huang WY, Su LJ, et al. Aspirin, ibuprofen, and reduced risk of advanced colorectal adenoma incidence and recurrence and colorectal cancer in the PLCO Cancer Screening Trial[J]. Cancer, 2021, 127(17): 3145-55. DOI: 10.1002/cncr.33623 |
3 | Shamay-Ramot A, Khermesh K, Porath HT, et al. Fmrp interacts with Adar and regulates RNA editing, synaptic density and locomotor activity in zebrafish[J]. PLoS Genet, 2015, 11(12): e1005702. DOI: 10.1371/journal.pgen.1005702 |
4 | Shah S, Molinaro G, Liu BT, et al. FMRP control of ribosome translocation promotes chromatin modifications and alternative splicing of neuronal genes linked to autism[J]. Cell Rep, 2020, 30(13): 4459-72.e6. DOI: 10.1016/j.celrep.2020.02.076 |
5 | Pedini G, Buccarelli M, Bianchi F, et al. FMRP modulates the Wnt signalling pathway in glioblastoma[J]. Cell Death Dis, 2022, 13(8): 719. DOI: 10.1038/s41419-022-05019-w |
6 | Lucá R, Averna M, Zalfa F, et al. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation[J]. EMBO Mol Med, 2013, 5(10): 1523-36. DOI: 10.1002/emmm.201302847 |
7 | Zhao XL, Yang J, Zhang J, et al. Inhibitory effect of aptamer-carbon dot nanomaterial-siRNA complex on the metastasis of hepatocellular carcinoma cells by interfering with FMRP[J]. Eur J Pharm Biopharm, 2022, 174: 47-55. DOI: 10.1016/j.ejpb.2022.03.013 |
8 | Shen ZF, Liu BW, Wu BT, et al. FMRP regulates STAT3 mRNA localization to cellular protrusions and local translation to promote hepatocellular carcinoma metastasis[J]. Commun Biol, 2021, 4(1): 540. DOI: 10.1038/s42003-021-02071-8 |
9 | Zeng QQ, Saghafinia S, Chryplewicz A, et al. Aberrant hyperexpression of the RNA binding protein FMRP in tumors mediates immune evasion[J]. Science, 2022, 378(6621): eabl7207. DOI: 10.1126/science.abl7207 |
10 | Hu YH, Gao QZ, Ma S, et al. FMR1 promotes the progression of colorectal cancer cell by stabilizing EGFR mRNA in an m6A-dependent manner[J]. Cell Death Dis, 2022, 13(11): 941. DOI: 10.1038/s41419-022-05391-7 |
11 | Di Grazia A, Marafini I, Pedini G, et al. The fragile X mental retardation protein regulates RIPK1 and colorectal cancer resistance to necroptosis[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(2): 639-58. DOI: 10.1016/j.jcmgh.2020.10.009 |
12 | Lei G, Mao C, Yan YL, et al. Ferroptosis, radiotherapy, and combination therapeutic strategies[J]. Protein Cell, 2021, 12(11): 836-57. DOI: 10.1007/s13238-021-00841-y |
13 | McGillicuddy LT, Fromm JA, Hollstein PE, et al. Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis[J]. Cancer Cell, 2009, 16(1): 44-54. DOI: 10.1016/j.ccr.2009.05.009 |
14 | Angius A, Pira G, Scanu AM, et al. MicroRNA-425-5p expression affects BRAF/RAS/MAPK pathways in colorectal cancers[J]. Int J Med Sci, 2019, 16(11): 1480-91. DOI: 10.7150/ijms.35269 |
15 | Al-Obeed O, El-Obeid AS, Matou-Nasri S, et al. Herbal melanin inhibits colorectal cancer cell proliferation by altering redox balance, inducing apoptosis, and modulating MAPK signaling[J]. Cancer Cell Int, 2020, 20: 126. DOI: 10.1186/s12935-020-01206-x |
16 | O’Donnell WT, Warren ST. A decade of molecular studies of fragile X syndrome[J]. Annu Rev Neurosci, 2002, 25: 315-38. DOI: 10.1146/annurev.neuro.25.112701.142909 |
17 | 阳慧芝, 李思锐, 蔡桂月, 等. 脆性X智力低下蛋白在肿瘤致病机制中的研究进展[J]. 皮肤性病诊疗学杂志, 2023, 30(5): 460-4. |
18 | Lei G, Zhang YL, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression[J]. Cell Res, 2020, 30(2): 146-62. DOI: 10.1038/s41422-019-0263-3 |
19 | Yang JW, Mo JJ, Dai JJ, et al. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer[J]. Cell Death Dis, 2021, 12(11): 1079. DOI: 10.1038/s41419-021-04367-3 |
20 | He ZK, Yang JB, Sui CY, et al. FAM98A promotes resistance to 5-fluorouracil in colorectal cancer by suppressing ferroptosis[J]. Arch Biochem Biophys, 2022, 722: 109216. DOI: 10.1016/j.abb.2022.109216 |
21 | Wang R, Xing R, Su Q, et al. Knockdown of SFRS9 inhibits progression of colorectal cancer through triggering ferroptosis mediated by GPX4 reduction[J]. Front Oncol, 2021, 11: 683589. DOI: 10.3389/fonc.2021.683589 |
22 | Roemhild K, von Maltzahn F, Weiskirchen R, et al. Iron metabolism: pathophysiology and pharmacology[J]. Trends Pharmacol Sci, 2021, 42(8): 640-56. DOI: 10.1016/j.tips.2021.05.001 |
23 | Liu XF, Hai Y, Dong JQ, et al. Realgar-induced KRAS mutation lung cancer cell death via KRAS/Raf/MAPK mediates ferroptosis[J]. Int J Oncol, 2022, 61(6): 157. DOI: 10.3892/ijo.2022.5447 |
24 | Sun L, Wang H, Xu D, et al. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway[J]. Bioengineered, 2022, 13(1): 48-60. DOI: 10.1080/21655979.2021.2004980 |
25 | Soleimani A, Rahmani F, Saeedi N, et al. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer[J]. J Cell Biochem, 2019, 120(12): 19245-53. DOI: 10.1002/jcb.29268 |
26 | Vitiello PP, Cardone C, Martini G, et al. Receptor tyrosine kinase-dependent PI3K activation is an escape mechanism to vertical suppression of the EGFR/RAS/MAPK pathway in KRAS-mutated human colorectal cancer cell lines[J]. J Exp Clin Cancer Res, 2019, 38(1): 41. DOI: 10.1186/s13046-019-1035-0 |
27 | Hong S, Jeon M, Kwon J, et al. Targeting RAF isoforms and tumor microenvironments in RAS or BRAF mutant colorectal cancers with SJ-C1044 for anti-tumor activity[J]. Curr Issues Mol Biol, 2023, 45(7): 5865-78. DOI: 10.3390/cimb45070371 |
28 | Casingal CR, Kikkawa T, Inada H, et al. Identification of FMRP target mRNAs in the developmental brain: FMRP might coordinate Ras/MAPK, Wnt/β‑catenin, and mTOR signaling during corticogenesis[J]. Mol Brain, 2020, 13(1): 167. DOI: 10.1186/s13041-020-00706-1 |
[1] | Xinyuan CHEN, Chengting WU, Ruidi LI, Xueqin PAN, Yaodan ZHANG, Junyu TAO, Caizhi LIN. Shuangshu Decoction inhibits growth of gastric cancer cell xenografts by promoting cell ferroptosis via the P53/SLC7A11/GPX4 axis [J]. Journal of Southern Medical University, 2025, 45(7): 1363-1371. |
[2] | Mengying ZHANG, Chenling ZHAO, Liwei TIAN, Guofang YU, Wenming YANG, Ting DONG. Gandou Fumu Decoction improves liver steatosis by inhibiting hepatocyte ferroptosis in mice with Wilson's disease through the GPX4/ACSL4/ALOX15 signaling pathway [J]. Journal of Southern Medical University, 2025, 45(7): 1471-1478. |
[3] | Kang WANG, Haibin LI, Jing YU, Yuan MENG, Hongli ZHANG. High expression of ELFN1 is a prognostic biomarker and promotes proliferation and metastasis of colorectal cancer cells [J]. Journal of Southern Medical University, 2025, 45(7): 1543-1553. |
[4] | Nuozhou WENG, Bin TAN, Wentao ZENG, Jiayu GU, Lianji WENG, Kehong ZHENG. RGL1 overexpression promotes metastasis of colorectal cancer by upregulating motile focal adhesion assembly via activating the CDC42/RAC1 complex [J]. Journal of Southern Medical University, 2025, 45(5): 1031-1038. |
[5] | Anbang ZHANG, Xiuqi SUN, Bo PANG, Yuanhua WU, Jingyu SHI, Ning ZHANG, Tao YE. Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury in rats by inhibiting ferroptosis through the gut-brain axis and the Nrf2/HO-1 signaling pathway [J]. Journal of Southern Medical University, 2025, 45(5): 911-920. |
[6] | Linluo ZHANG, Changqing LI, Lingling HUANG, Xueping ZHOU, Yuanyuan LOU. Catalpol reduces liver toxicity of triptolide in mice by inhibiting hepatocyte ferroptosis through the SLC7A11/GPX4 pathway: testing the Fuzheng Zhidu theory for detoxification [J]. Journal of Southern Medical University, 2025, 45(4): 810-818. |
[7] | Zhennan MA, Fuquan LIU, Xuefeng ZHAO, Xiaowei ZHANG. High expression of DTX2 promotes proliferation, invasion and epithelial-mesenchymal transition of oxaliplatin-resistant colorectal cancer cells [J]. Journal of Southern Medical University, 2025, 45(4): 829-836. |
[8] | Shunjie QING, Zhiyong SHEN. High expression of hexokinase 2 promotes proliferation, migration and invasion of colorectal cancer cells by activating the JAK/STAT pathway and regulating tumor immune microenvironment [J]. Journal of Southern Medical University, 2025, 45(3): 542-553. |
[9] | Chunfei JI, Zongchao ZUO, Jun WANG, Miaonan LI. N-acetylneuraminic acid promotes ferroptosis of H9C2 cardiomyocytes with hypoxia/reoxygenation injury by inhibiting the Nrf2 axis [J]. Journal of Southern Medical University, 2025, 45(1): 72-79. |
[10] | Kai JI, Guanyu YU, Leqi ZHOU, Tianshuai ZHANG, Qianlong LING, Wenjiang MAN, Bing ZHU, Wei ZHANG. HNRNPA1 gene is highly expressed in colorectal cancer: its prognostic implications and potential as a therapeutic target [J]. Journal of Southern Medical University, 2024, 44(9): 1685-1695. |
[11] | Kai CHEN, Zhaofei MENG, Jingting MIN, Jiahui WANG, Zhenghong LI, Qin GAO, Junfeng HU. Curcumin alleviates septic lung injury in mice by inhibiting TXNIP/TRX-1/GPX4-mediated ferroptosis [J]. Journal of Southern Medical University, 2024, 44(9): 1805-1813. |
[12] | Mingzi OUYANG, Jiaqi CUI, Hui WANG, Zheng LIANG, Dajin PI, Liguo CHEN, Qianjun CHEN, Yingchao WU. Kaixinsan alleviates adriamycin-induced depression-like behaviors in mice by reducing ferroptosis in the prefrontal cortex [J]. Journal of Southern Medical University, 2024, 44(8): 1441-1449. |
[13] | Yinliang ZHANG, Zetan LUO, Rui ZHAO, Na ZHAO, Zhidong XU, Di AO, Guyi CONG, Xinyu LIU, Hailun ZHENG. Sanguinarine induces ferroptosis of colorectal cancer cells by upregulating STUB1 and downregulating GPX4 [J]. Journal of Southern Medical University, 2024, 44(8): 1537-1544. |
[14] | Yuanguo WANG, Peng ZHANG. Ferroptosis suppressor genes are highly expressed in esophageal cancer to inhibit tumor cell ferroptosis [J]. Journal of Southern Medical University, 2024, 44(7): 1389-1396. |
[15] | Huaxing HE, Lulin LIU, Yingyin LIU, Nachuan CHEN, Suxia SUN. Sodium butyrate and sorafenib synergistically inhibit hepatocellular carcinoma cells possibly by inducing ferroptosis through inhibiting YAP [J]. Journal of Southern Medical University, 2024, 44(7): 1425-1430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||