Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (5): 885-893.doi: 10.12122/j.issn.1673-4254.2024.05.10
• Basic Research • Previous Articles Next Articles
Nan WANG1(), Bin SHI2, Xiaolan MAN1, Weichao WU3, Jia CAO4(
)
Received:
2023-12-27
Online:
2024-05-20
Published:
2024-06-06
Contact:
Jia CAO
E-mail:979377808@qq.com;caojiamed@126.com
Nan WANG, Bin SHI, Xiaolan MAN, Weichao WU, Jia CAO. High expression of fragile X mental retardation protein inhibits ferroptosis of colorectal tumor cells by activating the RAS/MAPK signaling pathway[J]. Journal of Southern Medical University, 2024, 44(5): 885-893.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.05.10
Gene | Sense (5'-3') | Antisense (5'-3') |
---|---|---|
hFMR1-1 | GAGGAUGAUAAAGGGUGAGUUTT | AACUCACCCUUUAUCAUCCUCTT |
hFMR1-2 | CGAGAUUUCAUGAACAGUUUATT | UAAACUGUUCAUGAAAUCUCGTT |
hFMR1-3 | GCGUUUGGAGAGAUUACAAAUTT | AUUUGUAAUCUCUCCAAACGCTT |
Tab.1 Sequences of the small interfering RNAs
Gene | Sense (5'-3') | Antisense (5'-3') |
---|---|---|
hFMR1-1 | GAGGAUGAUAAAGGGUGAGUUTT | AACUCACCCUUUAUCAUCCUCTT |
hFMR1-2 | CGAGAUUUCAUGAACAGUUUATT | UAAACUGUUCAUGAAAUCUCGTT |
hFMR1-3 | GCGUUUGGAGAGAUUACAAAUTT | AUUUGUAAUCUCUCCAAACGCTT |
Antibody name | Company | Dilution rate |
---|---|---|
Anti-GAPDH | Cell Signaling technology | 1∶1000 |
Anti-FMRP | Abcam | 1∶1000 |
Anti-HO-1 | Abmart | 1∶1000 |
Anti-GPX4 | Abmart | 1∶1000 |
Anti-SLC7A11 | Abmart | 1∶1000 |
Anti-ERK | Cell signaling technology | 1∶1000 |
Anti-p-ERK | Cell signaling technology | 1∶1000 |
Anti-MAPK | Cell signaling technology | 1∶500 |
Anti-p-MAPK | Cell signaling technology | 1∶1000 |
Anti-RAS | Cell signaling technology | 1∶500 |
Anti-p-RAS | Cell signaling technology | 1∶500 |
Anti-MEK | Cell signaling technology | 1∶1000 |
Anti-p-MRK | Cell signaling technology | 1∶1000 |
Tab.2 Antibody information
Antibody name | Company | Dilution rate |
---|---|---|
Anti-GAPDH | Cell Signaling technology | 1∶1000 |
Anti-FMRP | Abcam | 1∶1000 |
Anti-HO-1 | Abmart | 1∶1000 |
Anti-GPX4 | Abmart | 1∶1000 |
Anti-SLC7A11 | Abmart | 1∶1000 |
Anti-ERK | Cell signaling technology | 1∶1000 |
Anti-p-ERK | Cell signaling technology | 1∶1000 |
Anti-MAPK | Cell signaling technology | 1∶500 |
Anti-p-MAPK | Cell signaling technology | 1∶1000 |
Anti-RAS | Cell signaling technology | 1∶500 |
Anti-p-RAS | Cell signaling technology | 1∶500 |
Anti-MEK | Cell signaling technology | 1∶1000 |
Anti-p-MRK | Cell signaling technology | 1∶1000 |
Fig.1 Expression levels of FMRP in colorectal cancer (CRC) cell lines and tissues. A: RT-PCR for detecting the expression of FMRP in different CRC cell lines. B: Western blotting for detecting FMRP protein expression in different CRC cell lines. C: Expression of FMRP in colorectal cancer tissues and normal tissues. D: Relationship between FMRP expression and disease-free survival of CRC patients. *P<0.05 vs NCM460 group.
Fig.2 Bioinformatic analysis of biological functions and signaling pathways enriched in FMRP. A: Two groups of differential genes. B: Up-regulated and down-regulated differential genes. C: GO functional enrichment bands. D: GSEA-GO enrichment analysis. E: Circular enrichment map of differential genes in iron ion homeostasis. F: GSEA-KEGG analysis map.
Fig.3 Effect of FMRP knockdown or overexpression on HCT116 cell proliferation. A: Western blotting for verifying the efficiency of FMRP knockdown or overexpression. B: RT-PCR of FMRP mRNA expression in HCT116 cells. C: CCK8 assay of the proliferation of the transfected HCT116 cells. D: Plate clone formation assay of cell proliferation. *P<0.05, **P<0.01 vs Control or Lv-NC group.
Fig.4 Effect of FMRP knockdown or overexpression on ferroptosis of HCT116 cells. A: GSH contents in transfected HCT116 cells. B: MDA contents in the transfected cells. C: ROS level in the transfected cells. D: Fe2+ level in the transfected cells (scale bar=50 μm). E: Western blots of the ferroptosis markers in the transfected cells. F: Immunofluorescence detection of SLC7A11 in HCT116 cells with FMRP knockdown (scale bar=20 μm). G: Immunofluorescence detection of mitochondrial membrane potential in HCT116 cells with FMRP knockdown (scale bar=20 μm). *P<0.05, **P<0.01 vs Control or Lv-NC group.
Fig.5 Effect of FMRP knockdown on growth of transplanted tumor in nude mice. A: The size of subcutaneously transplanted tumor in nude mice. B: Changes in tumor weight in nude mice. C: Changes in tumor volume in nude mice. D: Immunohistochemistry for FMRP and SLC7A11 in the tumor tissue (scale bar=250 μm). *P<0.05, **P<0.01 vs Control.
Fig.6 Effect of FMRP knockdown or overexpression on RAS/MAPK signaling pathway in HCT116 cells detected by Western blotting. *P<0.05, **P<0.01 vs Control or Lv-NC group.
1 | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. DOI: 10.3322/caac.21660 |
2 | Chudy-Onwugaje K, Huang WY, Su LJ, et al. Aspirin, ibuprofen, and reduced risk of advanced colorectal adenoma incidence and recurrence and colorectal cancer in the PLCO Cancer Screening Trial[J]. Cancer, 2021, 127(17): 3145-55. DOI: 10.1002/cncr.33623 |
3 | Shamay-Ramot A, Khermesh K, Porath HT, et al. Fmrp interacts with Adar and regulates RNA editing, synaptic density and locomotor activity in zebrafish[J]. PLoS Genet, 2015, 11(12): e1005702. DOI: 10.1371/journal.pgen.1005702 |
4 | Shah S, Molinaro G, Liu BT, et al. FMRP control of ribosome translocation promotes chromatin modifications and alternative splicing of neuronal genes linked to autism[J]. Cell Rep, 2020, 30(13): 4459-72.e6. DOI: 10.1016/j.celrep.2020.02.076 |
5 | Pedini G, Buccarelli M, Bianchi F, et al. FMRP modulates the Wnt signalling pathway in glioblastoma[J]. Cell Death Dis, 2022, 13(8): 719. DOI: 10.1038/s41419-022-05019-w |
6 | Lucá R, Averna M, Zalfa F, et al. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation[J]. EMBO Mol Med, 2013, 5(10): 1523-36. DOI: 10.1002/emmm.201302847 |
7 | Zhao XL, Yang J, Zhang J, et al. Inhibitory effect of aptamer-carbon dot nanomaterial-siRNA complex on the metastasis of hepatocellular carcinoma cells by interfering with FMRP[J]. Eur J Pharm Biopharm, 2022, 174: 47-55. DOI: 10.1016/j.ejpb.2022.03.013 |
8 | Shen ZF, Liu BW, Wu BT, et al. FMRP regulates STAT3 mRNA localization to cellular protrusions and local translation to promote hepatocellular carcinoma metastasis[J]. Commun Biol, 2021, 4(1): 540. DOI: 10.1038/s42003-021-02071-8 |
9 | Zeng QQ, Saghafinia S, Chryplewicz A, et al. Aberrant hyperexpression of the RNA binding protein FMRP in tumors mediates immune evasion[J]. Science, 2022, 378(6621): eabl7207. DOI: 10.1126/science.abl7207 |
10 | Hu YH, Gao QZ, Ma S, et al. FMR1 promotes the progression of colorectal cancer cell by stabilizing EGFR mRNA in an m6A-dependent manner[J]. Cell Death Dis, 2022, 13(11): 941. DOI: 10.1038/s41419-022-05391-7 |
11 | Di Grazia A, Marafini I, Pedini G, et al. The fragile X mental retardation protein regulates RIPK1 and colorectal cancer resistance to necroptosis[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(2): 639-58. DOI: 10.1016/j.jcmgh.2020.10.009 |
12 | Lei G, Mao C, Yan YL, et al. Ferroptosis, radiotherapy, and combination therapeutic strategies[J]. Protein Cell, 2021, 12(11): 836-57. DOI: 10.1007/s13238-021-00841-y |
13 | McGillicuddy LT, Fromm JA, Hollstein PE, et al. Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis[J]. Cancer Cell, 2009, 16(1): 44-54. DOI: 10.1016/j.ccr.2009.05.009 |
14 | Angius A, Pira G, Scanu AM, et al. MicroRNA-425-5p expression affects BRAF/RAS/MAPK pathways in colorectal cancers[J]. Int J Med Sci, 2019, 16(11): 1480-91. DOI: 10.7150/ijms.35269 |
15 | Al-Obeed O, El-Obeid AS, Matou-Nasri S, et al. Herbal melanin inhibits colorectal cancer cell proliferation by altering redox balance, inducing apoptosis, and modulating MAPK signaling[J]. Cancer Cell Int, 2020, 20: 126. DOI: 10.1186/s12935-020-01206-x |
16 | O’Donnell WT, Warren ST. A decade of molecular studies of fragile X syndrome[J]. Annu Rev Neurosci, 2002, 25: 315-38. DOI: 10.1146/annurev.neuro.25.112701.142909 |
17 | 阳慧芝, 李思锐, 蔡桂月, 等. 脆性X智力低下蛋白在肿瘤致病机制中的研究进展[J]. 皮肤性病诊疗学杂志, 2023, 30(5): 460-4. |
18 | Lei G, Zhang YL, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression[J]. Cell Res, 2020, 30(2): 146-62. DOI: 10.1038/s41422-019-0263-3 |
19 | Yang JW, Mo JJ, Dai JJ, et al. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer[J]. Cell Death Dis, 2021, 12(11): 1079. DOI: 10.1038/s41419-021-04367-3 |
20 | He ZK, Yang JB, Sui CY, et al. FAM98A promotes resistance to 5-fluorouracil in colorectal cancer by suppressing ferroptosis[J]. Arch Biochem Biophys, 2022, 722: 109216. DOI: 10.1016/j.abb.2022.109216 |
21 | Wang R, Xing R, Su Q, et al. Knockdown of SFRS9 inhibits progression of colorectal cancer through triggering ferroptosis mediated by GPX4 reduction[J]. Front Oncol, 2021, 11: 683589. DOI: 10.3389/fonc.2021.683589 |
22 | Roemhild K, von Maltzahn F, Weiskirchen R, et al. Iron metabolism: pathophysiology and pharmacology[J]. Trends Pharmacol Sci, 2021, 42(8): 640-56. DOI: 10.1016/j.tips.2021.05.001 |
23 | Liu XF, Hai Y, Dong JQ, et al. Realgar-induced KRAS mutation lung cancer cell death via KRAS/Raf/MAPK mediates ferroptosis[J]. Int J Oncol, 2022, 61(6): 157. DOI: 10.3892/ijo.2022.5447 |
24 | Sun L, Wang H, Xu D, et al. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway[J]. Bioengineered, 2022, 13(1): 48-60. DOI: 10.1080/21655979.2021.2004980 |
25 | Soleimani A, Rahmani F, Saeedi N, et al. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer[J]. J Cell Biochem, 2019, 120(12): 19245-53. DOI: 10.1002/jcb.29268 |
26 | Vitiello PP, Cardone C, Martini G, et al. Receptor tyrosine kinase-dependent PI3K activation is an escape mechanism to vertical suppression of the EGFR/RAS/MAPK pathway in KRAS-mutated human colorectal cancer cell lines[J]. J Exp Clin Cancer Res, 2019, 38(1): 41. DOI: 10.1186/s13046-019-1035-0 |
27 | Hong S, Jeon M, Kwon J, et al. Targeting RAF isoforms and tumor microenvironments in RAS or BRAF mutant colorectal cancers with SJ-C1044 for anti-tumor activity[J]. Curr Issues Mol Biol, 2023, 45(7): 5865-78. DOI: 10.3390/cimb45070371 |
28 | Casingal CR, Kikkawa T, Inada H, et al. Identification of FMRP target mRNAs in the developmental brain: FMRP might coordinate Ras/MAPK, Wnt/β‑catenin, and mTOR signaling during corticogenesis[J]. Mol Brain, 2020, 13(1): 167. DOI: 10.1186/s13041-020-00706-1 |
[1] | LI Shuxian, YU Shuping, MU Yaming, WANG Kai, LIU Yu, ZHANG Meihua. Metformin ameliorates PM2.5- induced functional impairment of placental trophoblasts by inhibiting ferroptosis [J]. Journal of Southern Medical University, 2024, 44(3): 437-446. |
[2] | SUN Shuo, HUANG Xin, LI Guodong, ZHANG Chunyun, LU Zemei, ZHANG Weiwei, LI Zeyan, YANG Qingzhu. MACC1 knockdown enhances RSL3-induced ferroptosis in human colorectal cancer cells by inhibiting GPX4 expression [J]. Journal of Southern Medical University, 2024, 44(1): 173-178. |
[3] | ZHANG Xiaohong, ZHAO Pin, KUAI Jianke, CHANG Chao, YUAN Qing. Spermidine alleviates lipopolysaccharide-induced myocardial injury in mice by suppressing apoptosis, ROS production and ferroptosis [J]. Journal of Southern Medical University, 2024, 44(1): 166-172. |
[4] | ZHU Quan, HUANG Baisheng, WEI Leiyan, LUO Qizhi. Overexpression of LncRNA MEG3 promotes ferroptosis and enhances chemotherapy sensitivity of hepatocellular carcinoma cells to cisplatin [J]. Journal of Southern Medical University, 2024, 44(1): 17-24. |
[5] | HUANG Yi, Lin Lishan, HUANG Haohua, DONG Hangming. VDAC1 participates in house dust mite- induced asthmatic airway inflammation in mice by inducing ferroptosis of airway epithelial cells [J]. Journal of Southern Medical University, 2023, 43(8): 1333-1338. |
[6] | YAN Chang, LIU Shuang, SONG Qingzhi, HU Yibing. Metformin inhibits self-renewal of colorectal cancer stem cells by inhibiting mitochondrial oxidative phosphorylation [J]. Journal of Southern Medical University, 2023, 43(8): 1279-1286. |
[7] | WEI Ke, SHI Jiwen, XIAO Yuhan, WANG Wenrui, YANG Qingling, CHEN Changjie. MiR-30e-5p overexpression promotes proliferation and migration of colorectal cancer cells by activating the CXCL12 axis via downregulating PTEN [J]. Journal of Southern Medical University, 2023, 43(7): 1081-1092. |
[8] | ZHANG Xuefang, CHEN Yanhua, LI Zongheng, SHANG Jing, YUAN Zeting, DENG Wanli, LUO Ying, HAN Na, YIN Peihao, YIN Jun. Analysis of therapeutic mechanism of Liushen Wan against colitis-associated colorectal cancer based on network pharmacology and validation in mice [J]. Journal of Southern Medical University, 2023, 43(7): 1051-1062. |
[9] | DENG Ting, DU Boyu, XI Xueyan. Colorectal cancer cells induce the formation of cancer-associated fibroblasts by activating the ERK signaling pathway in fibroblasts [J]. Journal of Southern Medical University, 2023, 43(6): 943-951. |
[10] | XIE Siyu, LI Miaosheng, JIANG Fengle, YI Qian, YANG Wei. EHHADH is a key gene in fatty acid metabolism pathways in hepatocellular carcinoma: a transcriptomic analysis [J]. Journal of Southern Medical University, 2023, 43(5): 680-693. |
[11] | MA Zhennan, ZHAO Xuefeng, ZHANG Xiaowei, XU Guangda, LIU Fuquan. DTX2 overexpression promotes migration and invasion of colorectal cancer cells through the Notch2/Akt axis [J]. Journal of Southern Medical University, 2023, 43(3): 340-348. |
[12] | WANG Xuancheng, ZHU Yifan, ZHOU Hailin, HUANG Zongsheng, CHEN Hongwei, ZHANG Jiahao, YANG Shanyi, CHEN Guanghui, ZHANG Qisong. Integrated analysis of serum untargeted metabolomics and targeted bile acid metabolomics for identification of diagnostic biomarkers for colorectal cancer [J]. Journal of Southern Medical University, 2023, 43(3): 443-453. |
[13] | LI Shai, LI Li, MIN Simin, LIU Saisai, QIN Zhiwen, XIONG Zhishang, XU Jianguo, WANG Bowen, DING Dushan, ZHAO Shidi. Soybean isoflavones alleviate cerebral ischemia/reperfusion injury in rats by inhibiting ferroptosis and inflammatory cascade reaction [J]. Journal of Southern Medical University, 2023, 43(2): 323-330. |
[14] | LI Bin, WANG Yue, HOU Fengwei, DU Jiaru, TONG Xuhui. Rapamycin enhances inhibitory effect of RSL3 on proliferation, invasion and migration of testicular cancer I-10 cells in vitro [J]. Journal of Southern Medical University, 2023, 43(12): 2145-2151. |
[15] | ZHAO Huanling, LING Yuxiao, MI Shuai, ZHU Jiahao, FAN Jiayao, YANG Ye, WANG Jing, LI Yingjun. Associations of circulating leptin levels with colorectal adenoma and colorectal cancer: a case-control and Mendelian randomization study [J]. Journal of Southern Medical University, 2023, 43(12): 1989-1997. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||