Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (4): 829-836.doi: 10.12122/j.issn.1673-4254.2025.04.18
Zhennan MA(), Fuquan LIU, Xuefeng ZHAO, Xiaowei ZHANG(
)
Received:
2024-12-06
Online:
2025-04-20
Published:
2025-04-28
Contact:
Xiaowei ZHANG
E-mail:mazhennan8888@163.com;12348450@qq.com
Zhennan MA, Fuquan LIU, Xuefeng ZHAO, Xiaowei ZHANG. High expression of DTX2 promotes proliferation, invasion and epithelial-mesenchymal transition of oxaliplatin-resistant colorectal cancer cells[J]. Journal of Southern Medical University, 2025, 45(4): 829-836.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.04.18
Fig 2 Western blotting for detecting protein expressions of DTX2 (A) and its relative protein (B) and mRNA (C) expression levels in CRC and CRC/OXA cells. SW620/OXA: Oxaliplatin-resistant SW620 cells; LoVo /OXA: Oxaliplatin-resistant LoVo cell. *P<0.01.
Fig.3 Plate cloning assays showing the proliferation capacity of CRC/OXA cells after transfection with DTX2-shRNA and DTX2-shRNA+pcDNA-Notch2 (A) and the mean number of colonies formed (B). *P<0.05.
Fig.4 Scratch assay for assessing changes of migration ability of SW620/OXA (A, B) and LoVo/OXA (C, D) cells after transfection with DTX2-shRNA and DTX2-shRNA+pcDNA-Notch2. *P<0.05.
Fig.5 Transwell invasion assay for assessing changes of migration ability of SW620/OXA and LoVo/OXA cells after transfection with DTX2-shRNA and DTX2-shRNA+pcDNA-Notch2. A: Microscopic observation of the cells (Original magnification: ×100). B: Average number of invasive cells in different groups. *P<0.01.
Fig.6 Changes of protein expressions in the Notch2 Signal pathway and EMT in SW620 and LoVo cells co-transfected with DTX2-shRNA and DTX2-shRNA+pcDNA-Notch2. A, C: Western blots of the proteins in SW620/OXA and LoVo/OXA cells. B, D: Quantitative analysis of the protein expressions. GAPDH was used as the internal control. *P<0.01.
Fig.7 Growth of SW620/OXA cell xenografts transfected with DTX2-shRNA or DTX2-shRNA+pcDNA-Notch2 in nude mice. A: Observation of the tumor-bearing mice and the dissected tumors. B: Changes in the volume of the xenografts over time. C: Xenograft weight measurement. *P<0.05.
Fig.8 Protein expressions in SW620/OXA cell xenografts transfected with DTX2-shRNA or DTX2-shRNA+pcDNA-Notch2. A: Western blotting of the proteins in SW620/OXA cell xenografts. B: Quantitative analysis of the protein expressions. GAPDH was used as the internal control. *P<0.01.
1 | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. |
2 | Guo JF, Yu Z, Das M, et al. Nano codelivery of oxaliplatin and folinic acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal cancer and liver metastasis[J]. ACS Nano, 2020, 14(4): 5075-89. |
3 | Rasmussen MH, Lyskjær I, Jersie-Christensen RR, et al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells[J]. Nat Commun, 2016, 7: 12436. |
4 | Zacharakis G, Almasoud A, Arahmaner O, et al. A 5-year evaluation of early-and late-onset sporadic colorectal cancer screening in central Saudi Arabia[J]. Saudi J Gastroenterol, 2023, 29(2): 95-101. |
5 | Shi YX, Niu Y, Yuan YC, et al. PRMT3-mediated arginine methylation of IGF2BP1 promotes oxaliplatin resistance in liver cancer[J]. Nat Commun, 2023, 14(1): 1932. |
6 | Wu SZ, Shen SH, Lu F, et al. Bromodomain containing 4 transcriptionally activated Deltex E3 ubiquitin ligase 2 contributes to glioma progression and predicts an unfavorable prognosis[J]. Ann Transl Med, 2022, 10(6): 313. |
7 | Li R, Chen Y, Yang B, et al. DTX2 promotes glioma development via regulation of HLTF[J]. Biol Direct, 2024, 19(1): 2. |
8 | 黄小强. 基于生信分析DTX2相关基因在肝癌中的表达及临床价值[D]. 广州: 南方医科大学, 2024. |
9 | Liu Z, Liu C, Fan CH, et al. E3 ubiquitin ligase DTX2 fosters ferroptosis resistance via suppressing NCOA4-mediated ferritinophagy in non-small cell lung cancer[J]. Drug Resist Updat, 2024, 77: 101154. |
10 | Song M, Kuerban M, Zhao L, et al. Inhibition of RFX6 suppresses the invasive ability of tumor cells through the Notch pathway and affects tumor immunity in hepatocellular carcinoma[J]. Front Oncol, 2021, 11: 801222. |
11 | 马振南, 许广大, 刘福全, 等. 结直肠癌组织中DTX2分子的表达及临床意义[J]. 中国普外基础与临床杂志, 2021, 28(7): 861-6. |
12 | 马振南, 赵雪峰, 张晓微, 等. DTX2通过Notch2/Akt轴促进结直肠癌细胞的迁移和侵袭[J]. 南方医科大学学报, 2023, 43(3): 340-8. |
13 | De Mattia E, Dreussi E, Montico M, et al. A clinical-genetic score to identify surgically resected colorectal cancer patients benefiting from an adjuvant fluoropyrimidine-based therapy[J]. Front Pharmacol, 2018, 9: 1101. |
14 | 邓金海, 潘 腾, 周广林, 等. 高表达分泌颗粒蛋白Ⅱ增加结直肠癌细胞对奥沙利铂的耐药性[J]. 南方医科大学学报, 2023, 43(10): 1657-64. |
15 | Mayer RJ. Flashback foreword: oxaliplatin plus LV5FU2 in colorectal cancer[J]. J Clin Oncol, 2023, 41(33): 5077-8. |
16 | Cai M, Hu WL, Huang CJ, et al. lncRNA MCF2L-AS1/miR-105/IL-1β axis regulates colorectal cancer cell oxaliplatin resistance[J]. Cancer Manag Res, 2021, 13: 8685-94. |
17 | Mora Y, Reyes ME, Zanella L, et al. Resistance to platinum-based cancer drugs: a special focus on epigenetic mechanisms[J]. Pharmacogenomics, 2021, 22(12): 777-90. |
18 | Kosugi C, Koda K, Ishibashi K, et al. Safety of mFOLFOX6/XELOX as adjuvant chemotherapy after curative resection of stage III colon cancer: phase II clinical study (The FACOS study)[J]. Int J Colorectal Dis, 2018, 33(6): 809-17. |
19 | Li HR, Yang BB. Friend or foe: the role of microRNA in chemo-therapy resistance[J]. Acta Pharmacol Sin, 2013, 34(7): 870-9. |
20 | Yu ZL, Deng P, Chen YF, et al. Inhibition of the PLK1-coupled cell cycle machinery overcomes resistance to oxaliplatin in colorectal cancer[J]. Adv Sci, 2021, 8(23): e2100759. |
21 | Zhang CY, Xu C, Gao XY, et al. Platinum-based drugs for cancer therapy and anti-tumor strategies[J]. Theranostics, 2022, 12(5): 2115-32. |
22 | Hölzel M, Bovier A, Tüting T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance [J]? Nat Rev Cancer, 2013, 13(5): 365-76. |
23 | McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities[J]. Nat Rev Drug Discov, 2013, 12(3): 217-28. |
24 | Wang Q, Chen X, Jiang YH, et al. Elevating H3K27me3 level sensitizes colorectal cancer to oxaliplatin[J]. J Mol Cell Biol, 2020, 12(2): 125-37. |
25 | Dhanyamraju PK. Drug resistance mechanisms in cancers: execution of pro-survival strategies[J]. J Biomed Res, 2024, 38(2): 95-121. |
26 | Chen G, Gong T, Wang Z, et al. Colorectal cancer organoid models uncover oxaliplatin- resistant mechanisms at single cell resolution [J]. Cell Oncol (Dordr), 2022, 45(6):1155-67. |
27 | Aliabadi F, Sohrabi B, Mostafavi E, et al. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy[J]. Open Biol, 2021, 11(4): 200390. |
28 | Han DW, Wang LJ, Jiang S, et al. The ubiquitin-proteasome system in breast cancer[J]. Trends Mol Med, 2023, 29(8): 599-621. |
29 | Park J, Cho J, Song EJ. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res, 2020, 43(11): 1144-61. |
30 | 李向阳. 甲状腺乳头状癌中DTX2的表达与临床意义[D]. 沈阳: 中国医科大学, 2018. |
31 | Cui YH, Wei JB, Fan H, et al. Targeting DTX2/UFD1-mediated FTO degradation to regulate antitumor immunity[J]. Proc Natl Acad Sci USA, 2024, 121(51): e2407910121. |
32 | Maki K, Sasaki K, Sugita F, et al. Acute myeloid leukemia with t(7;21)(q11.2;q22) expresses a novel, reversed-sequence RUNX1-DTX2 Chimera[J]. Int J Hematol, 2012, 96(2): 268-73. |
33 | Yonezawa T, Takahashi H, Hao YY, et al. The E3 ligase DTX2 inhibits RUNX1 function by binding its C terminus and prevents the growth of RUNX1-dependent leukemia cells[J]. FEBS J, 2023, 290(21): 5141-57. |
34 | Zhou BH, Lin WL, Long YL, et al. Notch signaling pathway: architecture, disease, and therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 95. |
[1] | Shunjie QING, Zhiyong SHEN. High expression of hexokinase 2 promotes proliferation, migration and invasion of colorectal cancer cells by activating the JAK/STAT pathway and regulating tumor immune microenvironment [J]. Journal of Southern Medical University, 2025, 45(3): 542-553. |
[2] | Lu TAO, Zhuoli WEI, Yueyue WANG, Ping XIANG. CEACAM6 inhibits proliferation and migration of nasopharyngeal carcinoma cells by suppressing epithelial-mesenchymal transition [J]. Journal of Southern Medical University, 2025, 45(3): 566-576. |
[3] | Kai JI, Guanyu YU, Leqi ZHOU, Tianshuai ZHANG, Qianlong LING, Wenjiang MAN, Bing ZHU, Wei ZHANG. HNRNPA1 gene is highly expressed in colorectal cancer: its prognostic implications and potential as a therapeutic target [J]. Journal of Southern Medical University, 2024, 44(9): 1685-1695. |
[4] | Yinliang ZHANG, Zetan LUO, Rui ZHAO, Na ZHAO, Zhidong XU, Di AO, Guyi CONG, Xinyu LIU, Hailun ZHENG. Sanguinarine induces ferroptosis of colorectal cancer cells by upregulating STUB1 and downregulating GPX4 [J]. Journal of Southern Medical University, 2024, 44(8): 1537-1544. |
[5] | Heping LI, Gaohua LI, Xuehua ZHANG, Yanan WANG. Genetic drivers for inflammatory protein markers in colorectal cancer: a Mendelian randomization approach to clinical prognosis study [J]. Journal of Southern Medical University, 2024, 44(7): 1361-1370. |
[6] | Nan WANG, Bin SHI, Xiaolan MAN, Weichao WU, Jia CAO. High expression of fragile X mental retardation protein inhibits ferroptosis of colorectal tumor cells by activating the RAS/MAPK signaling pathway [J]. Journal of Southern Medical University, 2024, 44(5): 885-893. |
[7] | ZHANG Wenjing, ZHANG Nuo, YANG Zi, ZHANG Xiaofeng, SUN Aofei, WANG Lian, SONG Xue, GENG Zhijun, LI Jing, HU Jianguo. Overexpression of BZW1 promotes invasion and metastasis of gastric cancer cells by regulating Wnt/β-catenin signaling and promoting epithelial-mesenchymal transition [J]. Journal of Southern Medical University, 2024, 44(2): 354-362. |
[8] | Fuxing ZHANG, Guoqing LIU, Rui DONG, Lei GAO, Weichen LU, Lianxia GAO, Zhongkuo ZHAO, Fei LU, Mulin LIU. High expression of CRTAC1 promotes proliferation, migration and immune cell infiltration of gastric cancer by regulating the PI3K/AKT signaling pathway [J]. Journal of Southern Medical University, 2024, 44(12): 2421-2433. |
[9] | Xueyan XI, Ting DENG, Boyu DU. Colorectal fibroblasts promote malignant phenotype of colorectal cancer cells by activating the ERK signaling pathway [J]. Journal of Southern Medical University, 2024, 44(10): 1866-1873. |
[10] | ZHANG Xiaolin, WU Haosong, WANG Sheng. SLC12A8 promotes proliferation, invasiveness, migration and epithelial-mesenchymal transition of bladder cancer cells by activating JAK/STAT singaling [J]. Journal of Southern Medical University, 2023, 43(9): 1613-1621. |
[11] | ZUO Lugen, WANG Lian, YANG Zi, LI Junjie, WANG Wenfeng, LI Jing, WANG Yueyue, SONG Xue, ZHNAG Xiaofeng, GENG Zhijun. High expression of CAMSAP2 promotes invasion and metastasis of gastric cancer cells by upregulating TGF-β signaling [J]. Journal of Southern Medical University, 2023, 43(9): 1460-1468. |
[12] | GUO Xiaojuan, CHEN Liping, LÜ Qin, DU Ruijuan, LUO Qin, ZHANG Yang, BIAN Hua, HAN Li. Guizhi Fuling Capsule inhibits migration and induces apoptosis of human ovarian cancer cells by regulating the NF-κB signaling pathway [J]. Journal of Southern Medical University, 2023, 43(8): 1315-1321. |
[13] | XIE Ziping, LIU Liwei, FANG Jincun, ZHONG Xingyi, LIN Junhao, CHEN Fengsheng. ARHGAP21 inhibits epithelial-mesenchymal transition by inactivating the WNT signaling pathway in non-small cell lung cancer [J]. Journal of Southern Medical University, 2023, 43(8): 1322-1332. |
[14] | YAN Chang, LIU Shuang, SONG Qingzhi, HU Yibing. Metformin inhibits self-renewal of colorectal cancer stem cells by inhibiting mitochondrial oxidative phosphorylation [J]. Journal of Southern Medical University, 2023, 43(8): 1279-1286. |
[15] | WEI Ke, SHI Jiwen, XIAO Yuhan, WANG Wenrui, YANG Qingling, CHEN Changjie. MiR-30e-5p overexpression promotes proliferation and migration of colorectal cancer cells by activating the CXCL12 axis via downregulating PTEN [J]. Journal of Southern Medical University, 2023, 43(7): 1081-1092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||