Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (10): 2071-2081.doi: 10.12122/j.issn.1673-4254.2025.10.03
Tao GUO1,2(
), Bolin CHEN1, Jinsha SHI1, Xianfeng KUANG1, Tengyue YU1, Song WEI1, Xiong LIU2, Rong XIAO1, Juanjuan LI1(
)
Received:2025-06-19
Online:2025-10-20
Published:2025-10-24
Contact:
Juanjuan LI
E-mail:475612496@qq.com;lijuanjuan@kmmu.edu.cn
Supported by:Tao GUO, Bolin CHEN, Jinsha SHI, Xianfeng KUANG, Tengyue YU, Song WEI, Xiong LIU, Rong XIAO, Juanjuan LI. Gastrodin inhibits ferroptosis to alleviate hypoxic-ischemic brain damage in neonatal mice by activating GPX4/SLC7A11/FTH1 signaling[J]. Journal of Southern Medical University, 2025, 45(10): 2071-2081.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.10.03
Fig.1 Gastrodin produces neuroprotective effects in neonatal mice with HIBD. A: Representative images of HE staining. B, C: Representative images and count statistics of Nissl staining. D: Zea-Longa method for evaluating nerve function injury score. Scale bar=50 μm. ***P<0.001 vs Sham group; #P<0.05, ##P<0.01, ###P<0.001 vs HIBD group (n=6).
Fig.2 Effects of gastrodin on Fe2+, MDA, GSH and DHE levels in neonatal mice after HIBD. A-C: Relative levels of ferrous iron, MDA and GSH in different groups. D, E: Quantitative analysis and representative images of fluorescence intensity of DHE (Scale bar=10 μm). F: Representative images of mitochondrial structure observed by electron microscopy (Scale bar=500 nm). **P<0.01, ***P<0.001 vs Sham group; #P<0.05, ##P<0.01 vs HIBD group (n=3).
Fig.3 Effects of gastrodin on expressions of ferroptosis-related proteins in the ischemic penumbra of the cerebral cortex after HIBD. A-D: Western blotting protein bands of GPX4, SLC7A11 and FTH1 and their relative expression levels. E, F: Quantification and representative images of immunofluorescence double labeling of GPX4 and NeuN (Scale bar=10 μm). **P<0.01, ***P<0.001 vs Sham group; #P<0.05, ##P<0.01, ###P<0.001 vs HIBD group (n=3).
Fig.4 Effects of gastrodin on expressions of ferroptosis-related proteins in HT22 neurons after oxygen-glucose deprivation (OGD). Western blotting (A-D) and immunofluorescence double labeling (E-F) were used to detect the expression levels of GPX4, SLC7A11 and FTH1 proteins. Scale bar=10 μm. **P<0.01, ***P<0.001 vs Control group; #P<0.05, ##P<0.01 vs OGD group; &&P<0.01, &&&P<0.001 vs OGD+GAS group (n=3).
Fig.5 Effects of gastrodin on Fe2+, DCFH-DA, BODIPY-C11, MDA, and GSH levels in HT22 neurons after OGD. A, D: Representative images and quantification of Fe2+ level detected using the FerroOrange fluorescent probe (Scale bar=50 μm). B, E: Representative images and quantification of ROS detected using DCFH-DA fluorescent probe (Scale bar=50 μm). C, F, G: Representative images and quantification of lipid peroxidation using BODIPY-C11 fluorescent probe and MDA kit (Scale bar=10 μm). H: Quantification of antioxidant products by GSH. **P<0.01, ***P<0.001 vs Control group; #P<0.05, ##P<0.01 vs OGD group; &P<0.05, &&P<0.01 vs OGD+GAS group (n=3).
Fig.6 Neuroprotective effects of gastrodin against OGD-induced cell damage. A: CCK-8 assay of HT22 cell viability. B, C: Quantitative analysis and representative images of the ratio of mitochondrial membrane potential aggregates (red) and monomers (green) detected by JC-1. Scale bar=50 μm. ***P<0.001 vs Control group; #P<0.05, ##P<0.01 vs OGD group; &&P<0.01, &&&P<0.001 vs OGD+GAS group (n=3).
| [1] | De Palma ST, Hermans EC, Shamorkina TM, et al. Hypoxic preconditioning enhances the potential of mesenchymal stem cells to treat neonatal hypoxic-ischemic brain injury[J]. Stroke, 2025, 56(7): 1872-82. doi:10.1161/strokeaha.124.048964 |
| [2] | Yang MM, Wang KX, Liu BY, et al. Correction to: hypoxic-ischemic encephalopathy: pathogenesis and promising therapies[J]. Mol Neurobiol, 2025, 62(2): 2123. doi:10.1007/s12035-024-04398-9 |
| [3] | 石金沙, 张皓南, 张幸霖, 等. 天麻素通过调节CCR5/AKT信号传导缓解新生小鼠缺血缺氧后小胶质细胞介导的炎症反应[J]. 南方医科大学学报, 2024, 44(10): 1850-7. |
| [4] | Deng QT, Parker E, Duan R, et al. Preconditioning and posttrea-tment strategies in neonatal hypoxic-ischemic encephalopathy: recent advances and clinical challenges[J]. Mol Neurobiol, 2025, 62(8): 10020-44. doi:10.1007/s12035-025-04896-4 |
| [5] | Zheng JY, Fang Y, Zhang M, et al. Mechanisms of ferroptosis in hypoxic-ischemic brain damage in neonatal rats[J]. Exp Neurol, 2024, 372: 114641. doi:10.1016/j.expneurol.2023.114641 |
| [6] | 郭 涛, 左涵珺, 匡显锋, 等. 小胶质细胞介导的铁死亡在缺氧缺血性脑损伤中的研究进展[J]. 细胞与分子免疫学杂志, 2025, 41(6): 552-8. |
| [7] | Zhang XL, Luo JJ, Bharati L, et al. Protocatechuic acid suppresses ferroptosis to protect against hypoxic-ischemic encephalopathy by targeting the HIF-1α/VEGFA axis[J]. Phytomedicine, 2025, 143: 156900. doi:10.1016/j.phymed.2025.156900 |
| [8] | Feng L, Yin XH, Hua QQ, et al. Advancements in understanding the role of ferroptosis in hypoxia-associated brain injury: a narrative review[J]. Transl Pediatr, 2024, 13(6): 963-75. doi:10.21037/tp-24-47 |
| [9] | 张新月, 刘晨萌, 马瑜徽, 等. TXNIP/Trx-1/GPX4通路促进新生大鼠缺氧缺血后海马神经元铁死亡的作用机制[J]. 中国当代儿科杂志, 2022, 24(9): 1053-60. |
| [10] | Tan XY, Zhang T, Ding XJ, et al. Iron overload facilitates neonatal hypoxic-ischemic brain damage via SLC7A11-mediated ferroptosis[J]. J Neurosci Res, 2023, 101(7): 1107-24. |
| [11] | Lin Q, Hu DW, Hao XH, et al. Effect of hypoxia-ischemia on the expression of iron-related proteins in neonatal rat brains[J]. Neural Plast, 2023, 2023: 4226139. doi:10.1155/2023/4226139 |
| [12] | Chen HC, Wusiman Y, Zhao J, et al. Metabolomics analysis revealed the neuroprotective role of 2-phosphoglyceric acid in hypoxic-ischemic brain damage through GPX4/ACSL4 axis regulation[J]. Eur J Pharmacol, 2024, 971: 176539. doi:10.1016/j.ejphar.2024.176539 |
| [13] | Zhang M, Liu ZM, Zhou W, et al. Ferrostatin-1 attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting ferroptosis[J]. Transl Pediatr, 2023, 12(11): 1944-70. doi:10.21037/tp-23-189 |
| [14] | Qin WX, Du JQ, Wang F, et al. Gastrodin: a potential natural product for the prevention and treatment of cerebral ischemia-reperfusion injury[J]. Front Pharmacol, 2025, 16: 1554170. doi:10.3389/fphar.2025.1554170 |
| [15] | Shi HL, Shi JS, Wang Z, et al. GAS reduced inflammatory responses in activated microglia by regulating the Ccr2/Akt/Gsk-3β pathway[J]. Mol Brain, 2025, 18(1): 40. doi:10.1186/s13041-025-01206-w |
| [16] | Wang PX, Zuo HJ, Shi HL, et al. Gastrodin inhibits reactive astrocyte-mediated inflammation in hypoxic-ischemic brain damage through S100B/RAGE-Smad3 signaling[J]. Acta Biochim Biophys Sin (Shanghai), 2025, 57(6): 955-67. doi:10.3724/abbs.2024235 |
| [17] | 刘 敏, 丁艳霞, 张业贵, 等. 天麻素对脑缺血大鼠纹状体BDNF、IL-6表达的影响[J]. 中国临床药理学与治疗学, 2024, 29(4): 440-6. |
| [18] | 左涵珺, 段兆达, 王 朝, 等. 天麻素经PI3K/AKT通路改善新生大鼠缺氧缺血性脑损伤后小胶质细胞介导的炎症反应[J]. 南方医科大学学报, 2024, 44(9): 1712-9. |
| [19] | Xiao P, Huang HY, Zhao HS, et al. Edaravone dexborneol protects against cerebral ischemia/reperfusion-induced blood-brain barrier damage by inhibiting ferroptosis via activation of nrf-2/HO-1/GPX4 signaling[J]. Free Radic Biol Med, 2024, 217: 116-25. doi:10.1016/j.freeradbiomed.2024.03.019 |
| [20] | 邱政皓, 马雅萍, 马昌盛, 等. 枸杞多糖通过SLC7A11/GPX4通路抑制铁死亡减轻小鼠脑缺血再灌注损伤[J]. 神经解剖学杂志, 2024, 40(5): 607-12. |
| [21] | Zhou YY, Wang YB, Wu XQ, et al. Carthamin yellow attenuates brain injury in a neonatal rat model of ischemic-hypoxic encephalopathy by inhibiting neuronal ferroptosis in the hippocampus[J]. Transl Neurosci, 2023, 14(1): 20220331. doi:10.1515/tnsci-2022-0331 |
| [22] | Liu QL, Song TJ, Chen B, et al. Ferroptosis of brain microvascular endothelial cells contributes to hypoxia-induced blood-brain barrier injury[J]. FASEB J, 2023, 37(5): e22874. doi:10.1096/fj.202201765r |
| [23] | Tian HY, Huang BY, Nie HF, et al. The interplay between mitochondrial dysfunction and ferroptosis during ischemia-associated central nervous system diseases[J]. Brain Sci, 2023, 13(10): 1367. doi:10.3390/brainsci13101367 |
| [24] | Abdukarimov N, Kokabi K, Kunz J. Ferroptosis and iron homeostasis: molecular mechanisms and neurodegenerative disease implications[J]. Antioxidants (Basel), 2025, 14(5): 527. doi:10.3390/antiox14050527 |
| [25] | 蒋 欢, 白文娅, 邵建林. 铁死亡在脑缺血再灌注损伤机制中的研究进展[J]. 中国比较医学杂志, 2024, 34(7): 101-9. |
| [26] | Al-Ward H, Chen W, Gao WX, et al. Can miRNAs in MSCs-EVs offer a potential treatment for hypoxic-ischemic encephalopathy?[J]. Stem Cell Rev Rep, 2025, 21(1): 236-53. doi:10.1007/s12015-024-10803-6 |
| [27] | Wang YL, Bai MT, Wang X, et al. Gastrodin: a comprehensive pharmacological review[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(6): 3781-802. doi:10.1007/s00210-023-02920-9 |
| [28] | 张林落, 李长青, 皇玲玲, 等. 梓醇扶正制毒配伍从SLC7A11/GPX4通路抑制铁死亡减轻雷公藤甲素肝毒性[J]. 南方医科大学学报, 2025, 45(4): 810-8. |
| [29] | Zhang JX, Liu ZJ, Zhao WJ, et al. Targeting KRAS sensitizes ferroptosis by coordinately regulating the TCA cycle and Nrf2-SLC7A11-GPX4 signaling in hepatocellular carcinoma[J]. Smart Med, 2025, 4(2): e70005. doi:10.1002/smmd.70005 |
| [30] | Khanduja S, Kim J, Kang JK, et al. Hypoxic-ischemic brain injury in ECMO: pathophysiology, neuromonitoring, and therapeutic opportunities[J]. Cells, 2023, 12(11): 1546. doi:10.3390/cells12111546 |
| [31] | Zheng X, Gong TW, Yu WQ, et al. Study on cellular mechanism of improving inflammatory effect of gastrodin[J]. Tohoku J Exp Med, 2025, 265(4): 249-59. doi:10.1620/tjem.2024.j141 |
| [32] | Salama RM, Darwish SF, Yehia R, et al. Lactoferrin alleviates gentamicin-induced acute kidney injury in rats by suppressing ferroptosis: Highlight on ACSL4, SLC7A11, NCOA4, FSP1 pathways and miR-378a-3p, LINC00618 expression[J]. Food Chem Toxicol, 2024, 193: 115027. doi:10.1016/j.fct.2024.115027 |
| [1] | Rongmao HE, Zeyang FANG, Yunyun ZHANG, Youliang WU, Shixiu LIANG, Tao JI, Kequan CHEN, Siqi WANG. Diagnostic and predictive value of ferroptosis-related genes in patients with ulcerative colitis [J]. Journal of Southern Medical University, 2025, 45(9): 1927-1937. |
| [2] | Qi YUN, Ruoli DU, Yuying HE, Yixin ZHANG, Jiahui WANG, Hongwei YE, Zhenghong LI, Qin GAO. Cinnamic acid ameliorates doxorubicin-induced myocardial injury in mice by attenuating cardiomyocyte ferroptosis via inhibiting TLR4 [J]. Journal of Southern Medical University, 2025, 45(9): 1946-1958. |
| [3] | Yu ZHANG, Yinqi HU, Peipei LI, Xiao SHI, Wei XU, Jianpeng HU. Naoluo Xintong Decoction promotes proliferation of rat brain microvascular endothelial cells after oxygen-glucose deprivation by activating the HIF-1α/VEGF signaling pathway [J]. Journal of Southern Medical University, 2025, 45(9): 1980-1988. |
| [4] | Zejin OU, Ying LI, Shi CHEN, Ziyi WANG, Meiyi HE, Zhicheng CHEN, Shihao TANG, Xiaojing MENG, Zhi WANG. Inhibition of ferroptosis alleviates acute kidney injury caused by diquat in zebrafish [J]. Journal of Southern Medical University, 2025, 45(8): 1743-1750. |
| [5] | Junyi LI, Siyuan CHEN, Liyao XIE, Jin WANG, Ao CHENG, Shaowei ZHANG, Jiyu LIN, Zhihan FANG, Yirui PAN, Chonghe CUI, Gengxin CHEN, Chao ZHANG, Li LI. β-sitosterol, an important component in the fruits of Alpinia oxyphylla Miq., prolongs lifespan of Caenorhabditis elegans by suppressing the ferroptosis pathway [J]. Journal of Southern Medical University, 2025, 45(8): 1751-1757. |
| [6] | Xinyuan CHEN, Chengting WU, Ruidi LI, Xueqin PAN, Yaodan ZHANG, Junyu TAO, Caizhi LIN. Shuangshu Decoction inhibits growth of gastric cancer cell xenografts by promoting cell ferroptosis via the P53/SLC7A11/GPX4 axis [J]. Journal of Southern Medical University, 2025, 45(7): 1363-1371. |
| [7] | Jingxian WANG, Zijing REN, Peiyang ZHOU. S1PR5 activation or overexpression enhances barrier function of mouse brain microvascular endothelial cells against OGD/R injury by modulating oxidative stress [J]. Journal of Southern Medical University, 2025, 45(7): 1451-1459. |
| [8] | Mengying ZHANG, Chenling ZHAO, Liwei TIAN, Guofang YU, Wenming YANG, Ting DONG. Gandou Fumu Decoction improves liver steatosis by inhibiting hepatocyte ferroptosis in mice with Wilson's disease through the GPX4/ACSL4/ALOX15 signaling pathway [J]. Journal of Southern Medical University, 2025, 45(7): 1471-1478. |
| [9] | Qiongqiong HU, Wenpei LI, Lixia XU, Ruilei GUAN, Dongya ZHANG, Jiaojiao JIANG, Ning WANG, Gaiqing YANG. Neurospecific transmembrane protein 240 colocalizes with peroxisomes and activates Rho GDP dissociation inhibitor β [J]. Journal of Southern Medical University, 2025, 45(6): 1260-1269. |
| [10] | Guanglü HE, Wanyu CHU, Yan LI, Xin SHENG, Hao LUO, Aiping XU, Mingjie BIAN, Huanhuan ZHANG, Mengya WANG, Chao ZHENG. Orexin-A promotes motor function recovery of rats with spinal cord injury by regulating ionotropic glutamate receptors [J]. Journal of Southern Medical University, 2025, 45(5): 1023-1030. |
| [11] | Anbang ZHANG, Xiuqi SUN, Bo PANG, Yuanhua WU, Jingyu SHI, Ning ZHANG, Tao YE. Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury in rats by inhibiting ferroptosis through the gut-brain axis and the Nrf2/HO-1 signaling pathway [J]. Journal of Southern Medical University, 2025, 45(5): 911-920. |
| [12] | Yue CHEN, Linyu XIAO, Lü REN, Xue SONG, Jing LI, Jianguo HU. Monotropein improves motor function of mice with spinal cord injury by inhibiting the PI3K/AKT signaling pathway to suppress neuronal apoptosis [J]. Journal of Southern Medical University, 2025, 45(4): 774-784. |
| [13] | Linluo ZHANG, Changqing LI, Lingling HUANG, Xueping ZHOU, Yuanyuan LOU. Catalpol reduces liver toxicity of triptolide in mice by inhibiting hepatocyte ferroptosis through the SLC7A11/GPX4 pathway: testing the Fuzheng Zhidu theory for detoxification [J]. Journal of Southern Medical University, 2025, 45(4): 810-818. |
| [14] | Ming LIAO, Wenhua ZHONG, Ran ZHANG, Juan LIANG, Wentaorui XU, Wenjun WAN, Chao LI Shu WU. Protein C activator derived from snake venom protects human umbilical vein endothelial cells against hypoxia-reoxygenation injury by suppressing ROS via upregulating HIF-1α and BNIP3 [J]. Journal of Southern Medical University, 2025, 45(3): 614-621. |
| [15] | Qiaoyan CAI, Yaoyao XU, Yuxing LIN, Haowei LIN, Junpeng ZHENG, Weixiang ZHANG, Chunyu ZHAO, Yupeng LIN, Ling ZHANG. Qingda Granules alleviate brain damage in spontaneously hypertensive rats by modulating the miR-124/STAT3 signaling axis [J]. Journal of Southern Medical University, 2025, 45(1): 18-26. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||