Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (9): 1927-1937.doi: 10.12122/j.issn.1673-4254.2025.09.12
Rongmao HE1(), Zeyang FANG1, Yunyun ZHANG1, Youliang WU1, Shixiu LIANG2, Tao JI3, Kequan CHEN1, Siqi WANG1(
)
Received:
2025-02-23
Online:
2025-09-20
Published:
2025-09-28
Contact:
Siqi WANG
E-mail:hrm715821@163.com;2023681011@gzhmu.edu.cn
Supported by:
Rongmao HE, Zeyang FANG, Yunyun ZHANG, Youliang WU, Shixiu LIANG, Tao JI, Kequan CHEN, Siqi WANG. Diagnostic and predictive value of ferroptosis-related genes in patients with ulcerative colitis[J]. Journal of Southern Medical University, 2025, 45(9): 1927-1937.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.09.12
Primer | Sequence |
---|---|
GPX4-F | GATGGAGCCCATTCCTGAACC |
GPX4-R | CCCTGTACTTATCCAGGCAGA |
NOX1-F | GGTTGGGGCTGAACATTTTTC |
NOX1-R | TCGACACACAGGAATCAGGAT |
CYBB-F | TGTGGTTGGGGCTGAATGTC |
CYBB-R | CTGAGAAAGGAGAGCAGATTTCG |
PTGS2-F | TTCAACACACTCTATCACTGGC |
PTGS2-R | AGAAGCGTTTGCGGTACTCAT |
HIF-1A-F | ACCTTCATCGGAAACTCCAAAG |
HIF-1A-R | CTGTTAGGCTGGGAAAAGTTAGG |
ACSL1-F | TGCCAGAGCTGATTGACATTC |
ACSL1-R | GGCATACCAGAAGGTGGTGAG |
SMAD7-F | GGCCGGATCTCAGGCATTC |
SMAD7-R | TTGGGTATCTGGAGTAAGGAGG |
CD44-F | TCGATTTGAATGTAACCTGCCG |
CD44-R | CAGTCCGGGAGATACTGTAGC |
PPARG-F | GGAAGACCACTCGCATTCCTT |
PPARG-R | GTAATCAGCAACCATTGGGTCA |
Tab.1 Primers sequences for qPCR
Primer | Sequence |
---|---|
GPX4-F | GATGGAGCCCATTCCTGAACC |
GPX4-R | CCCTGTACTTATCCAGGCAGA |
NOX1-F | GGTTGGGGCTGAACATTTTTC |
NOX1-R | TCGACACACAGGAATCAGGAT |
CYBB-F | TGTGGTTGGGGCTGAATGTC |
CYBB-R | CTGAGAAAGGAGAGCAGATTTCG |
PTGS2-F | TTCAACACACTCTATCACTGGC |
PTGS2-R | AGAAGCGTTTGCGGTACTCAT |
HIF-1A-F | ACCTTCATCGGAAACTCCAAAG |
HIF-1A-R | CTGTTAGGCTGGGAAAAGTTAGG |
ACSL1-F | TGCCAGAGCTGATTGACATTC |
ACSL1-R | GGCATACCAGAAGGTGGTGAG |
SMAD7-F | GGCCGGATCTCAGGCATTC |
SMAD7-R | TTGGGTATCTGGAGTAAGGAGG |
CD44-F | TCGATTTGAATGTAACCTGCCG |
CD44-R | CAGTCCGGGAGATACTGTAGC |
PPARG-F | GGAAGACCACTCGCATTCCTT |
PPARG-R | GTAATCAGCAACCATTGGGTCA |
Fig.1 Differentially expressed genes (DEGs) associated with iron death in UC patients and control subjects. A: Volcano maps of differential gene expressions in UC and control groups. B: Intersection of the DEGs and the genes associated with ferroptosis in UC and control groups. C: Heat maps of the DEGs associated with ferroptosis in UC and control groups. D: Classification of the 76 DEGs associated with ferroptosis, including 41 driver genes, 38 suppressor genes, and 2 marker genes.
Fig.2 Analysis of DEGs enrichment in relation to ferroptosis in UC and control groups. A: KEGG path in UC and control groups. B: Main biological processes of the DEGs in UC patients and control group. C: Main cell components of the DEGs in UC patients and control group. D: Main molecular functions of the DEGs in UC patients and control group.
Fig.3 PPI analysis of the DEGs associated with ferroptosis in UC and controls. A: PPI network of the DEGs associated with ferroptosis in UC and controls. B: MCC algorithm for screening the main hub gene network.
Fig.4 Analysis of the differences in immune checkpoint and immune infiltration between UC and control groups in the dataset. A: Differential expression of 8 immune checkpoint genes between UC and control group. **P<0.01,***P<0.001, ****P<0.0001 (Control group vs UC group). B: Differences in 28 different types of immune cells between UC patients and controls.
Fig.5 Relationship between pivot genes, immune checkpoint genes and immune cells. A: Pearson correlation analysis of the correlations of the hub gene with immune checkpoint gene in UC and control groups. B: CIBERSORT algorithm for assessing the correlation between the key genes and 28 immune cell types in UC and control group. *P<0.05, **P<0.01, ***P<0.001.
Fig.6 Analysis of the diagnostic values of the hub genes for UC using the training set. A: Expression differences of 10 hub genes between UC group and control group. ****P<0.0001, Control group vs UC group. B: ROC curves of the 10 hub genes for UC diagnosis.
Fig.7 Verification of the value of the 10 hub genes for predicting UC. A: Differences in the expression of 10 hub genes between UC group and control group. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (Control group vs UC group). B: ROC curve of the 10 hub genes for predicting UC.
Fig.8 Hub gene expressions in the colon tissues of the UC mouse model. A: Comparison of disease activity index (DAI) between control and UC mice. B: HE staining of the colon tissue in control and UC mice (Scale bar=50 μm). C: Comparison of the expression levels of the 10 hub genes in the colon tissues between control and UC mice. *P<0.05, **P<0.01, ***P<0.001 vs NC group.
[1] | Aniwan S, Santiago P, Loftus EV Jr, et al. The epidemiology of inflammatory bowel disease in Asia and Asian immigrants to Western countries[J]. UEG J, 2022, 10(10): 1063-76. doi:10.1002/ueg2.12350 |
[2] | Gros B, Kaplan GG. Ulcerative colitis in adults[J]. Jama, 2023, 330(10): 951. doi:10.1001/jama.2023.15389 |
[3] | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-72. doi:10.1016/j.cell.2012.03.042 |
[4] | Wang S, Liu W, Wang J, et al. Curculigoside inhibits ferroptosis in ulcerative colitis through the induction of GPX4[J]. Life Sci, 2020, 259: 118356. doi:10.1016/j.lfs.2020.118356 |
[5] | Chen YJ, Yan WY, Chen YQ, et al. SLC6A14 facilitates epithelial cell ferroptosis via the C/EBPβ-PAK6 axis in ulcerative colitis[J]. Cell Mol Life Sci, 2022, 79(11): 563. doi:10.1007/s00018-022-04594-7 |
[6] | Xu M, Tao J, Yang Y, et al. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis[J]. Cell Death Dis, 2020, 11(2): 86. doi:10.1038/s41419-020-2299-1 |
[7] | Deng L, He S, Li Y, et al. Identification of lipocalin 2 as a potential ferroptosis-related gene in ulcerative colitis[J]. Inflamm Bowel Dis, 2023, 29(9): 1446-57. doi:10.1093/ibd/izad050 |
[8] | Chen YJ, Wang JY, Li JT, et al. Astragalus polysaccharide prevents ferroptosis in a murine model of experimental colitis and human Caco-2 cells via inhibiting NRF2/HO-1 pathway[J]. Eur J Pharmacol, 2021, 911: 174518. doi:10.1016/j.ejphar.2021.174518 |
[9] | Xu C, Liu Z, Xiao J. Ferroptosis: a double-edged sword in gastrointestinal disease[J]. Int J Mol Sci, 2021, 22(22): 12403. doi:10.3390/ijms222212403 |
[10] | Ni JH, Zhang LJ, Feng GZ, et al. Vanillic acid restores homeostasis of intestinal epithelium in colitis through inhibiting CA9/STIM1-mediated ferroptosis[J]. Pharmacol Res, 2024, 202: 107128. doi:10.1016/j.phrs.2024.107128 |
[11] | Long D, Mao CH, Huang YT, et al. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets[J]. Biomed Pharmacother, 2024, 175: 116722. doi:10.1016/j.biopha.2024.116722 |
[12] | Ye Y, Liu L, Jing Y, et al. Ferroptosis: a therapeutic opportunity of inflammatory bowel disease[J]. Chin Med J: Engl, 2024, 137(7): 874-6. doi:10.1097/cm9.0000000000002998 |
[13] | Rahman MS, Alam MB, Kim YK, et al. Activation of Nrf2/HO-1 by peptide YD1 attenuates inflammatory symptoms through suppression of TLR4/MYyD88/NF‑κB signaling cascade[J]. Int J Mol Sci, 2021, 22(10): 5161. doi:10.3390/ijms22105161 |
[14] | Huang J, Zhang J, Ma J, et al. Inhibiting ferroptosis: a novel approach for ulcerative colitis therapeutics[J]. Oxid Med Cell Longev, 2022, 2022: 9678625. doi:10.1155/2022/9678625 |
[15] | 黄柳芳, 吴 博, 王 莹. 儿童溃疡性结肠炎手术治疗的预测标志物分析[J]. 临床儿科杂志, 2025, 43(2): 120-7. doi:10.12372/jcp.2025.24e0051 |
[16] | Fajas L, Auboeuf D, Raspé E, et al. The organization, promoter analysis, and expression of the human PPARγ gene[J]. J Biol Chem, 1997, 272(30): 18779-89. doi:10.1074/jbc.272.30.18779 |
[17] | Saez E, Tontonoz P, Nelson MC, et al. Activators of the nuclear receptor PPARgamma enhance colon polyp formation[J]. Nat Med, 1998, 4(9): 1058-61. doi:10.1038/2042 |
[18] | Braissant O. Differential expression of peroxisome proliferator-activated receptor-, -, and -during rat embryonic development[J]. Endocrinology, 1998, 139(6): 2748-54. doi:10.1210/en.139.6.2748 |
[19] | Michalik L, Wahli W. Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions[J]. Curr Opin Biotechnol, 1999, 10(6): 564-70. doi:10.1016/s0958-1669(99)00030-0 |
[20] | Zhang W, Gong M, Zhang W, et al. Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling[J]. Cell Death Dis, 2022, 13(7): 630. doi:10.1038/s41419-022-05082-3 |
[21] | Ouyang SM, Li HX, Lou LL, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer[J]. Redox Biol, 2022, 52: 102317. doi:10.1016/j.redox.2022.102317 |
[22] | Sugimoto K. Role of STAT3 in inflammatory bowel disease[J]. World J Gastroenterol, 2008, 14(33): 5110-4. doi:10.3748/wjg.14.5110 |
[23] | Alhouayek M, Buisseret B, Paquot A, et al. The endogenous bioactive lipid prostaglandin D2-glycerol ester reduces murine colitisviaDP1 and PPARγ receptors[J]. FASEB J, 2018, 32(9): 5000-11. doi:10.1096/fj.201701205r |
[24] | Farrokhyar F, Swarbrick ET, Irvine EJ. A critical review of epidemiological studies in inflammatory bowel disease[J]. Scand J Gastroenterol, 2001, 36(1): 2-15. doi:10.1080/00365520150218002 |
[25] | Cox DG, Crusius JB, Peeters PH, et al. Haplotype of prostaglandin synthase 2/cyclooxygenase 2 is involved in the susceptibility to inflammatory bowel disease[J]. World J Gastroenterol, 2005, 11(38): 6003-8. doi:10.3748/wjg.v11.i38.6003 |
[26] | Wallace JL. Prostaglandin biology in inflammatory bowel disease[J]. Gastroenterol Clin North Am, 2001, 30(4): 971-80. doi:10.1016/s0889-8553(05)70223-5 |
[27] | Feng D, Wang J, Li D, et al. Targeting prolyl 4-hydroxylase subunit beta (P4HB) in cancer: new roads to travel[J]. Aging Dis, 2023, 15(6): 2369-80. |
[28] | Feng D, Li L, Li D, et al. Prolyl 4-hydroxylase subunit beta (P4HB) could serve as a prognostic and radiosensitivity biomarker for prostate cancer patients[J]. Eur J Med Res, 2023, 28(1): 245. doi:10.1186/s40001-023-01215-2 |
[29] | Butturini E, Carcereri de Prati A, Mariotto S. Redox regulation of STAT1 and STAT3 signaling[J]. Int J Mol Sci, 2020, 21(19): E7034. doi:10.3390/ijms21197034 |
[30] | Thuya WL, Cao Y, Ho PC, et al. Insights into IL-6/JAK/STAT3 signaling in the tumor microenvironment: Implications for cancer therapy[J]. Cytokine Growth Factor Rev, 2025, doi: 10.1016/j.cytogfr.2025.01.003 . Online ahead of print. |
[31] | Zhang W, Gong M, Zhang W, et al. Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling[J]. Cell Death Dis, 2022, 13(7): 630. doi:10.1038/s41419-022-05082-3 |
[32] | Ouyang SM, Li HX, Lou LL, et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer[J]. Redox Biol, 2022, 52: 102317. doi:10.1016/j.redox.2022.102317 |
[33] | Huang F, Zhang S, Li X, et al. STAT3-mediated ferroptosis is involved in ulcerative colitis[J]. Free Radic Biol Med, 2022, 188: 375-85. doi:10.1016/j.freeradbiomed.2022.06.242 |
[1] | Chenfei LIU, Wei ZHANG, Yao ZENG, Yan LIANG, Mengting WANG, Mingfang ZHANG, Xinyuan LI, Fengchao WANG, Yanqing YANG. 2,6-dimethoxy-1,4-benzoquinone alleviates dextran sulfate sodium-induced ulcerative colitis in mice by suppressing NLRP3 inflammasome activation [J]. Journal of Southern Medical University, 2025, 45(8): 1654-1662. |
[2] | Zejin OU, Ying LI, Shi CHEN, Ziyi WANG, Meiyi HE, Zhicheng CHEN, Shihao TANG, Xiaojing MENG, Zhi WANG. Inhibition of ferroptosis alleviates acute kidney injury caused by diquat in zebrafish [J]. Journal of Southern Medical University, 2025, 45(8): 1743-1750. |
[3] | Junyi LI, Siyuan CHEN, Liyao XIE, Jin WANG, Ao CHENG, Shaowei ZHANG, Jiyu LIN, Zhihan FANG, Yirui PAN, Chonghe CUI, Gengxin CHEN, Chao ZHANG, Li LI. β-sitosterol, an important component in the fruits of Alpinia oxyphylla Miq., prolongs lifespan of Caenorhabditis elegans by suppressing the ferroptosis pathway [J]. Journal of Southern Medical University, 2025, 45(8): 1751-1757. |
[4] | Xinyuan CHEN, Chengting WU, Ruidi LI, Xueqin PAN, Yaodan ZHANG, Junyu TAO, Caizhi LIN. Shuangshu Decoction inhibits growth of gastric cancer cell xenografts by promoting cell ferroptosis via the P53/SLC7A11/GPX4 axis [J]. Journal of Southern Medical University, 2025, 45(7): 1363-1371. |
[5] | Mengying ZHANG, Chenling ZHAO, Liwei TIAN, Guofang YU, Wenming YANG, Ting DONG. Gandou Fumu Decoction improves liver steatosis by inhibiting hepatocyte ferroptosis in mice with Wilson's disease through the GPX4/ACSL4/ALOX15 signaling pathway [J]. Journal of Southern Medical University, 2025, 45(7): 1471-1478. |
[6] | Jinlong PANG, Xinli ZHAO, Zhen ZHANG, Haojie WANG, Xingqi ZHOU, Yumei YANG, Shanshan LI, Xiaoqiang CHANG, Feng LI, Xian LI. Overexpression of multimerin-2 promotes cutaneous melanoma cell invasion and migration and is associated with poor prognosis [J]. Journal of Southern Medical University, 2025, 45(7): 1479-1489. |
[7] | Hongbo ZHANG, Mengyu YAN, Jiandong ZHANG, Peiwang SUN, Rui WANG, Yuanyuan GUO. Pirfenidone inhibits bladder cancer xenograft growth in mice by regulating regulatory T cells [J]. Journal of Southern Medical University, 2025, 45(7): 1513-1518. |
[8] | Xiaojuan GUO, Ruijuan DU, Liping CHEN, Kelei GUO, Biao ZHOU, Hua BIAN, Li HAN. WW domain-containing ubiquitin E3 ligase 1 regulates immune infiltration in tumor microenvironment of ovarian cancer [J]. Journal of Southern Medical University, 2025, 45(5): 1063-1073. |
[9] | Anbang ZHANG, Xiuqi SUN, Bo PANG, Yuanhua WU, Jingyu SHI, Ning ZHANG, Tao YE. Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury in rats by inhibiting ferroptosis through the gut-brain axis and the Nrf2/HO-1 signaling pathway [J]. Journal of Southern Medical University, 2025, 45(5): 911-920. |
[10] | Linluo ZHANG, Changqing LI, Lingling HUANG, Xueping ZHOU, Yuanyuan LOU. Catalpol reduces liver toxicity of triptolide in mice by inhibiting hepatocyte ferroptosis through the SLC7A11/GPX4 pathway: testing the Fuzheng Zhidu theory for detoxification [J]. Journal of Southern Medical University, 2025, 45(4): 810-818. |
[11] | Zhi GAO, Ao WU, Zhongxiang HU, Peiyang SUN. Bioinformatics analysis of oxidative stress and immune infiltration in rheumatoid arthritis [J]. Journal of Southern Medical University, 2025, 45(4): 862-870. |
[12] | Lin SHEN, Cuihao SONG, Congmin WANG, Xi GAO, Junhong AN, Chengxin LI, Bin LIANG, Xia LI. Risk factors for malnutrition in ulcerative colitis complicated with pyoderma gangrenosum and construction of a lasso regression-based prediction model [J]. Journal of Southern Medical University, 2025, 45(3): 514-521. |
[13] | Lixia YIN, Minzhu NIU, Keni ZHANG, Zhijun GENG, Jianguo HU, Jiangyan LI, Jing LI. Cimifugin ameliorates Crohn's disease-like colitis in mice by modulating Th-cell immune balance via inhibiting the MAPK pathway [J]. Journal of Southern Medical University, 2025, 45(3): 595-602. |
[14] | Yaobin WANG, Liuyan CHEN, Yiling LUO, Jiqing SHEN, Sufang ZHOU. Predictive value of NUF2 for prognosis and immunotherapy responses in pan-cancer [J]. Journal of Southern Medical University, 2025, 45(1): 137-149. |
[15] | Chunfei JI, Zongchao ZUO, Jun WANG, Miaonan LI. N-acetylneuraminic acid promotes ferroptosis of H9C2 cardiomyocytes with hypoxia/reoxygenation injury by inhibiting the Nrf2 axis [J]. Journal of Southern Medical University, 2025, 45(1): 72-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||