南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (6): 1185-1199.doi: 10.12122/j.issn.1673-4254.2025.06.08
李国永1,2(), 黎仁玲3, 刘艺婷1,2, 柯宏霞1,2, 李菁1,2(
), 王新华1,2(
)
收稿日期:
2025-01-06
出版日期:
2025-06-20
发布日期:
2025-06-27
通讯作者:
李菁,王新华
E-mail:L15626421524@163.com;lijing82@gzhmu.edu.cn;xinhuaw@gzhmu.edu.cn
作者简介:
李国永,在读硕士研究生,E-mail: L15626421524@163.com
基金资助:
Guoyong LI1,2(), Renling LI3, Yiting LIU1,2, Hongxia KE1,2, Jing LI1,2(
), Xinhua WANG1,2(
)
Received:
2025-01-06
Online:
2025-06-20
Published:
2025-06-27
Contact:
Jing LI, Xinhua WANG
E-mail:L15626421524@163.com;lijing82@gzhmu.edu.cn;xinhuaw@gzhmu.edu.cn
Supported by:
摘要:
目的 应用代谢组学、网络药理学及实验验证探究牛蒡子治疗病毒性肺炎后肺纤维化(PPF)的作用机制。 方法 采用UHPLC-Q-TOF-MS/MS技术鉴定牛蒡子提取物化学成分,SPF级小鼠随机分为4组,8只/组,分别为空白组(Ctrl)、模型组(BLM)、AL低剂量组(ALL)、AL高剂量组(ALH)。采用博来霉素气管给药模式建立小鼠肺纤维化模型,给予牛蒡子治疗后,记录体质量变化、观察HE及MASSON染色的肺组织病理变化。通过代谢组学分析筛选差异代谢物及相关代谢通路。基于OMIM、TTD、Gene Cards等数据库获取病毒性肺炎与肺纤维化的共同靶点,通过PPI、GO、KEGG富集分析及分子对接筛选核心靶点和有效成分,并构建“基因-代谢物”调控网络;Western blotting技术检测相关基因信号蛋白表达水平。 结果 鉴定出牛蒡子化学成分53个,牛蒡子可显著改善肺纤维化小鼠的体质量下降、肺组织炎症浸润(P<0.05)以及纤维化(P<0.05)。差异代谢物主要富集在柠檬酸代谢、磷酸戊糖途径、糖酵解途径、色氨酸代谢、谷氨酸代谢、谷胱甘肽途径等能量代谢途径,调控了能量代谢途径中间产物的产量。筛选出23个关键活性成分(以木脂素、酚酸等为主)和82个核心靶点,涉及PI3K/AKT、HIF-1、MAPK、Foxo等非经典Smad信号通路,“基因-代谢物”调控网络显示非经典Smad信号途径中的基因参与到了能量代谢的调节。并且牛蒡子调控Fibronectin、Vimentim、Snail、E-cadherin、N-cadherin等上皮-间质转化(EMT)进程的标志蛋白(P<0.05),抑制MAPK信号通路激活。 结论 牛蒡子通过调控能量代谢抑制EMT治疗纤维化,并且涉及调控MAPK等非经典Smad信号通路,为牛蒡子治疗PPF的临床应用及后续研究提供理论支持。
李国永, 黎仁玲, 刘艺婷, 柯宏霞, 李菁, 王新华. 牛蒡子治疗小鼠病毒性肺炎后肺纤维化的机制:基于代谢组学、网络药理学和实验验证方法[J]. 南方医科大学学报, 2025, 45(6): 1185-1199.
Guoyong LI, Renling LI, Yiting LIU, Hongxia KE, Jing LI, Xinhua WANG. Therapeutic mechanism of Arctium lappa extract for post-viral pneumonia pulmonary fibrosis: a metabolomics, network pharmacology analysis and experimental verification[J]. Journal of Southern Medical University, 2025, 45(6): 1185-1199.
No. | Retention time (min) | m/z | Adduct ion | Molecular formula | Compound | Fragment ion | ||
---|---|---|---|---|---|---|---|---|
Theoretical | Measured | Mass error/ppm | ||||||
1 | 1.574 | 138.055 | 138.0554 | 3.39 | [M+H]+ | C3H7NO2 | Aminobenzoic acid [ | 120.0449, 94.0657 |
2 | 2.228 | 268.104 | 268.1044 | 1.69 | [M+H]+ | C10H13N5O4 | Adenosine [ | 136.0608, 119.0346 |
3 | 2.494 | 132.1019 | 132.1023 | 2.93 | [M+H]+ | C6H13NO2 | L-Leucine [ | 86.0972, 69.0705 |
4 | 2.686 | 132.1019 | 132.1023 | 3.08 | [M+H]+ | C6H13NO2 | L-isoleucine [ | 86.0965, 77.0386 |
5 | 2.854 | 331.0671 | 331.0753 | 3.02 | [M-H]- | C13H16O10 | 1-O-Galloyl-glucose [ | 168.0063, 125.0242 |
6 | 3.237 | 345.0827 | 345.091 | 3.01 | [M-H]- | C14H18O10 | Methyl-6-O-galloyl-β-D-glucopyranoside [ | 137.0249, 93.0347 |
7 | 3.802 | 166.0863 | 166.0868 | 3.14 | [M+H]+ | C9H11NO2 | L-Phenylalanine [ | 120.0811, 103.0544 |
8 | 3.919 | 447.1508 | 447.1504 | 2.34 | [M-H]- | C19H28O12 | 4-hydroxy-3-methoxybenzylalcohol-4-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside [ | 293.0881, 149.0456 |
9 | 4.634 | 353.0878 | 353.0888 | 2.53 | [M-H]- | C16H18O9 | 5-caffeoylquinic acid[ | 135.0453, 191.0562 |
10 | 4.932 | 113.0597 | 113.0602 | 4.42 | [M+H]+ | C6H8O2 | Parasorbic acid[ | 95.0496, 59.0501 |
11 | 5.199 | 205.0972 | 205.0974 | 1.36 | [M+H]+ | C11H12N2O2 | Tryptophan[ | 146.0610, 118.0657 |
12 | 6.431 | 353.0878 | 353.0891 | 3.32 | [M-H]- | C16H18O9 | Chlorogenic acid(NBZ1)[ | 191.0569, 127.0402 |
13 | 6.681 | 353.0878 | 353.0890 | 3.24 | [M-H]- | C16H18O9 | Cryptochlorgenic acid[ | 191.0571, 85.0301 |
14 | 7.163 | 537.1978 | 537.1987 | 0.88 | [M-H]- | C26H34O12 | Terebinthacoside III(NBZ2)[ | 327.1251, 312.0999 |
15 | 7.496 | 179.035 | 179.0357 | 4.02 | [M-H]- | C9H8O4 | Caffeic acid(NBZ3)[ | 179.0351, 149.0611 |
16 | 7.579 | 161.0244 | 161.0246 | 4.97 | [M-H]- | C9H6O3 | Hydroxycoumarin(NBZ4)[ | 177.0562, 133.0660 |
17 | 8.061 | 337.0929 | 337.0941 | 3.26 | [M-H]- | C16H18O8 | 3-p-Coumaroylquinic acid [ | 191.0568, 93.0346 |
18 | 8.311 | 539.2134 | 539.2079 | 1.22 | [M-H]- | C26H36O12 | (7R,8R)-7,9,9'-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan-9'-O-β-D-glucopyranoside(NBZ5)[ | 377.1613, 195.0668 |
19 | 9.409 | 681.24 | 681.2461 | -1.69 | [M-H]- | C32H42O16 | Pinoresinol-4'4'-O-β-D-glucoside[ | 519.1874, 357.1347 |
20 | 10.326 | 417.1755 | 417.1865 | 1.41 | [M+H]+ | C19H28O10 | 2-phenethyl-β-primeveroside[ | 307.1153, 159.0806 |
21 | 10.907 | 567.2083 | 567.2092 | 0.85 | [M+HCOO]- | C26H34O11 | Lariciresinol-4-β-D-glucopyranoside[ | 151.0394, 314.1152 |
22 | 11.672 | 535.1821 | 535.1780 | 1 | [M-H]- | C26H32O12 | 4,4',9'-trihydroxy-3,3'-dimethoxy-7',9-epoxylignan-7-oxo-4-O-β-D-glucopyranoside[ | 387.1451, 151.0403 |
23 | 12.105 | 515.1195 | 515.1207 | 1.98 | [M-H]- | C25H24O12 | 3,5-dicaffeoylquinic acid(NBZ6)[ | 353.0881, 191.0562 |
24 | 12.347 | 749.2815 | 749.2821 | 0.79 | [M-H]- | C40H46O14 | Lappaol H(NBZ7)[ | 665.2400, 559.1979 |
25 | 12.720 | 549.1978 | 549.1972 | -1.55 | [M-H]- | C27H34O12 | 2-hydroxyarctiin [ | 387.1456, 151.0406 |
26 | 13.363 | 519.1872 | 519.1868 | -0.97 | [M-H]- | C26H32O11 | Pinoresinol‑O‑β‑D‑glucopyranoside(NBZ8)[ | 357.1348, 221.0817 |
27 | 14.334 | 515.1195 | 515.1205 | 1.7 | [M-H]- | C25H24O12 | 4,5-dicaffeoylquinic acid(NBZ9)[ | 353.0898, 173.0463 |
28 | 14.983 | 553.2079 | 553.2087 | 1.06 | [M-H]- | C30H34O10 | Lappaol C(NBZ10)[ | 505.1874, 411.1458 |
29 | 15.166 | 553.2079 | 553.2087 | 0.91 | [M-H]- | C30H34O10 | Isolappaol C(NBZ11)[ | 505.1874, 411.1458 |
30 | 15.796 | 552.2439 | 552.2442 | 2.1 | [M+NH4]+ | C27H34O11 | Arctiin(NBZ12)[ | 373.1655, 355.1547 |
31 | 17.079 | 553.2068 | 553.2077 | 1.63 | [M+H]+ | C30H32O10 | Arctignan C[ | 505.1858, 353.0384 |
32 | 17.379 | 551.1923 | 551.1930 | 1 | [M-H]- | C30H32O10 | Arctignan B[ | 521.1819, 397.1295 |
33 | 17.761 | 731.2709 | 731.2712 | 0.32 | [M-H]- | C40H44O13 | Arctignan D(NBZ13)[ | 665.2398, 559.1972 |
34 | 17.911 | 553.2079 | 553.2087 | 1.26 | [M-H]- | C30H34O10 | Arctignan A(NBZ14)[ | 505.1875, 357.1352 |
35 | 17.928 | 357.1344 | 357.1354 | 2.62 | [M-H]- | C20H22O6 | Matairesinol(NBZ15)[ | 342.1115, 221.0825 |
36 | 17.994 | 567.2236 | 567.2244 | 0.98 | [M-H]- | C31H36O10 | Lappaol D(NBZ16)[ | 415.1764, 519.2021 |
37 | 18.028 | 731.2709 | 731.2713 | 0.48 | [M-H]- | C40H44O13 | Arctignan E(NBZ17)[ | 559.1964, 665.2379 |
38 | 20.307 | 559.1939 | 559.1949 | 1.94 | [M+Na]+ | C30H32O9 | Lappaol A(NBZ18)[ | 460.0799, 137.0597 |
39 | 20.581 | 537.2119 | 537.2075 | 1.7 | [M+H]+ | C30H32O9 | Isolappaol A(NBZ19[ | 371.1481 137.0599 |
40 | 21.039 | 373.1646 | 373.1644 | 0.96 | [M+H]+ | C21H24O6 | Arctigenin(NBZ20)[ | 305.1175 137.0602 |
41 | 22.137 | 713.2604 | 713.2609 | 0.5 | [M-H]- | C40H42O12 | Lappaol F(NBZ21)[ | 665.2381, 653.2382 |
42 | 22.753 | 549.213 | 549.2134 | 0.5 | [M-H]- | C31H34O9 | Lappaol B(NBZ22)[ | 531.2001, 519.2020 |
43 | 34.532 | 313.2463 | 313.2392 | 2.81 | [M+CH3COO]- | C16H30O2 | Hexadecenoic acid [ | 183.1394, 129.0921 |
44 | 35.281 | 315.2541 | 315.2548 | 2.42 | [M+HCOO]- | C17H34O2 | Daturic acid [ | 112.9852, 127.1120 |
45 | 35.647 | 295.2279 | 295.2278 | 0.52 | [M-H]- | C18H32O3 | 9(10)-EpOME[ | 277.2171, 195.1386 |
46 | 36.795 | 297.2435 | 297.2444 | 2.47 | [M-H]- | C18H34O3 | 9-hydroxy-12-octadecenoic acid [ | 279.2327, 127.1117 |
47 | 37.66 | 277.2173 | 277.2181 | 2.69 | [M-H]- | C18H30O2 | Linolenic acid [ | 233.2273, 177.1655 |
48 | 37.712 | 353.2662 | 353.2673 | 2.68 | [M+Na]+ | C19H38O4 | Monopalmitin [ | 209.1541, 91.0553 |
49 | 38.093 | 279.233 | 279.2338 | 3.05 | [M-H]- | C18H32O2 | Linoleicacid(NBZ23)[ | 261.2213, 167.0723 |
50 | 38.675 | 255.233 | 255.2337 | 2.41 | [M-H]- | C16H32O2 | Methyl pentadecanoate [ | 209.0621, 108.0204 |
51 | 39.041 | 281.2486 | 281.2492 | 1.98 | [M-H]- | C18H34O2 | Oleic acid [ | 127.0748, 263.2380 |
52 | 39.061 | 376.3421 | 376.3403 | 2.12 | [M+NH4]+ | C21H42O4 | 2-monostearin [ | 260.2363, 95.0850 |
53 | 40.055 | 283.2643 | 283.2645 | 0.67 | [M-H]- | C18H36O2 | Octadecanoic acid [ | 96.0190, 161.0050 |
表1 牛蒡子化学成分鉴定结果
Tab.1 Identification of chemical compounds in Arctium lappa extract
No. | Retention time (min) | m/z | Adduct ion | Molecular formula | Compound | Fragment ion | ||
---|---|---|---|---|---|---|---|---|
Theoretical | Measured | Mass error/ppm | ||||||
1 | 1.574 | 138.055 | 138.0554 | 3.39 | [M+H]+ | C3H7NO2 | Aminobenzoic acid [ | 120.0449, 94.0657 |
2 | 2.228 | 268.104 | 268.1044 | 1.69 | [M+H]+ | C10H13N5O4 | Adenosine [ | 136.0608, 119.0346 |
3 | 2.494 | 132.1019 | 132.1023 | 2.93 | [M+H]+ | C6H13NO2 | L-Leucine [ | 86.0972, 69.0705 |
4 | 2.686 | 132.1019 | 132.1023 | 3.08 | [M+H]+ | C6H13NO2 | L-isoleucine [ | 86.0965, 77.0386 |
5 | 2.854 | 331.0671 | 331.0753 | 3.02 | [M-H]- | C13H16O10 | 1-O-Galloyl-glucose [ | 168.0063, 125.0242 |
6 | 3.237 | 345.0827 | 345.091 | 3.01 | [M-H]- | C14H18O10 | Methyl-6-O-galloyl-β-D-glucopyranoside [ | 137.0249, 93.0347 |
7 | 3.802 | 166.0863 | 166.0868 | 3.14 | [M+H]+ | C9H11NO2 | L-Phenylalanine [ | 120.0811, 103.0544 |
8 | 3.919 | 447.1508 | 447.1504 | 2.34 | [M-H]- | C19H28O12 | 4-hydroxy-3-methoxybenzylalcohol-4-O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranoside [ | 293.0881, 149.0456 |
9 | 4.634 | 353.0878 | 353.0888 | 2.53 | [M-H]- | C16H18O9 | 5-caffeoylquinic acid[ | 135.0453, 191.0562 |
10 | 4.932 | 113.0597 | 113.0602 | 4.42 | [M+H]+ | C6H8O2 | Parasorbic acid[ | 95.0496, 59.0501 |
11 | 5.199 | 205.0972 | 205.0974 | 1.36 | [M+H]+ | C11H12N2O2 | Tryptophan[ | 146.0610, 118.0657 |
12 | 6.431 | 353.0878 | 353.0891 | 3.32 | [M-H]- | C16H18O9 | Chlorogenic acid(NBZ1)[ | 191.0569, 127.0402 |
13 | 6.681 | 353.0878 | 353.0890 | 3.24 | [M-H]- | C16H18O9 | Cryptochlorgenic acid[ | 191.0571, 85.0301 |
14 | 7.163 | 537.1978 | 537.1987 | 0.88 | [M-H]- | C26H34O12 | Terebinthacoside III(NBZ2)[ | 327.1251, 312.0999 |
15 | 7.496 | 179.035 | 179.0357 | 4.02 | [M-H]- | C9H8O4 | Caffeic acid(NBZ3)[ | 179.0351, 149.0611 |
16 | 7.579 | 161.0244 | 161.0246 | 4.97 | [M-H]- | C9H6O3 | Hydroxycoumarin(NBZ4)[ | 177.0562, 133.0660 |
17 | 8.061 | 337.0929 | 337.0941 | 3.26 | [M-H]- | C16H18O8 | 3-p-Coumaroylquinic acid [ | 191.0568, 93.0346 |
18 | 8.311 | 539.2134 | 539.2079 | 1.22 | [M-H]- | C26H36O12 | (7R,8R)-7,9,9'-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan-9'-O-β-D-glucopyranoside(NBZ5)[ | 377.1613, 195.0668 |
19 | 9.409 | 681.24 | 681.2461 | -1.69 | [M-H]- | C32H42O16 | Pinoresinol-4'4'-O-β-D-glucoside[ | 519.1874, 357.1347 |
20 | 10.326 | 417.1755 | 417.1865 | 1.41 | [M+H]+ | C19H28O10 | 2-phenethyl-β-primeveroside[ | 307.1153, 159.0806 |
21 | 10.907 | 567.2083 | 567.2092 | 0.85 | [M+HCOO]- | C26H34O11 | Lariciresinol-4-β-D-glucopyranoside[ | 151.0394, 314.1152 |
22 | 11.672 | 535.1821 | 535.1780 | 1 | [M-H]- | C26H32O12 | 4,4',9'-trihydroxy-3,3'-dimethoxy-7',9-epoxylignan-7-oxo-4-O-β-D-glucopyranoside[ | 387.1451, 151.0403 |
23 | 12.105 | 515.1195 | 515.1207 | 1.98 | [M-H]- | C25H24O12 | 3,5-dicaffeoylquinic acid(NBZ6)[ | 353.0881, 191.0562 |
24 | 12.347 | 749.2815 | 749.2821 | 0.79 | [M-H]- | C40H46O14 | Lappaol H(NBZ7)[ | 665.2400, 559.1979 |
25 | 12.720 | 549.1978 | 549.1972 | -1.55 | [M-H]- | C27H34O12 | 2-hydroxyarctiin [ | 387.1456, 151.0406 |
26 | 13.363 | 519.1872 | 519.1868 | -0.97 | [M-H]- | C26H32O11 | Pinoresinol‑O‑β‑D‑glucopyranoside(NBZ8)[ | 357.1348, 221.0817 |
27 | 14.334 | 515.1195 | 515.1205 | 1.7 | [M-H]- | C25H24O12 | 4,5-dicaffeoylquinic acid(NBZ9)[ | 353.0898, 173.0463 |
28 | 14.983 | 553.2079 | 553.2087 | 1.06 | [M-H]- | C30H34O10 | Lappaol C(NBZ10)[ | 505.1874, 411.1458 |
29 | 15.166 | 553.2079 | 553.2087 | 0.91 | [M-H]- | C30H34O10 | Isolappaol C(NBZ11)[ | 505.1874, 411.1458 |
30 | 15.796 | 552.2439 | 552.2442 | 2.1 | [M+NH4]+ | C27H34O11 | Arctiin(NBZ12)[ | 373.1655, 355.1547 |
31 | 17.079 | 553.2068 | 553.2077 | 1.63 | [M+H]+ | C30H32O10 | Arctignan C[ | 505.1858, 353.0384 |
32 | 17.379 | 551.1923 | 551.1930 | 1 | [M-H]- | C30H32O10 | Arctignan B[ | 521.1819, 397.1295 |
33 | 17.761 | 731.2709 | 731.2712 | 0.32 | [M-H]- | C40H44O13 | Arctignan D(NBZ13)[ | 665.2398, 559.1972 |
34 | 17.911 | 553.2079 | 553.2087 | 1.26 | [M-H]- | C30H34O10 | Arctignan A(NBZ14)[ | 505.1875, 357.1352 |
35 | 17.928 | 357.1344 | 357.1354 | 2.62 | [M-H]- | C20H22O6 | Matairesinol(NBZ15)[ | 342.1115, 221.0825 |
36 | 17.994 | 567.2236 | 567.2244 | 0.98 | [M-H]- | C31H36O10 | Lappaol D(NBZ16)[ | 415.1764, 519.2021 |
37 | 18.028 | 731.2709 | 731.2713 | 0.48 | [M-H]- | C40H44O13 | Arctignan E(NBZ17)[ | 559.1964, 665.2379 |
38 | 20.307 | 559.1939 | 559.1949 | 1.94 | [M+Na]+ | C30H32O9 | Lappaol A(NBZ18)[ | 460.0799, 137.0597 |
39 | 20.581 | 537.2119 | 537.2075 | 1.7 | [M+H]+ | C30H32O9 | Isolappaol A(NBZ19[ | 371.1481 137.0599 |
40 | 21.039 | 373.1646 | 373.1644 | 0.96 | [M+H]+ | C21H24O6 | Arctigenin(NBZ20)[ | 305.1175 137.0602 |
41 | 22.137 | 713.2604 | 713.2609 | 0.5 | [M-H]- | C40H42O12 | Lappaol F(NBZ21)[ | 665.2381, 653.2382 |
42 | 22.753 | 549.213 | 549.2134 | 0.5 | [M-H]- | C31H34O9 | Lappaol B(NBZ22)[ | 531.2001, 519.2020 |
43 | 34.532 | 313.2463 | 313.2392 | 2.81 | [M+CH3COO]- | C16H30O2 | Hexadecenoic acid [ | 183.1394, 129.0921 |
44 | 35.281 | 315.2541 | 315.2548 | 2.42 | [M+HCOO]- | C17H34O2 | Daturic acid [ | 112.9852, 127.1120 |
45 | 35.647 | 295.2279 | 295.2278 | 0.52 | [M-H]- | C18H32O3 | 9(10)-EpOME[ | 277.2171, 195.1386 |
46 | 36.795 | 297.2435 | 297.2444 | 2.47 | [M-H]- | C18H34O3 | 9-hydroxy-12-octadecenoic acid [ | 279.2327, 127.1117 |
47 | 37.66 | 277.2173 | 277.2181 | 2.69 | [M-H]- | C18H30O2 | Linolenic acid [ | 233.2273, 177.1655 |
48 | 37.712 | 353.2662 | 353.2673 | 2.68 | [M+Na]+ | C19H38O4 | Monopalmitin [ | 209.1541, 91.0553 |
49 | 38.093 | 279.233 | 279.2338 | 3.05 | [M-H]- | C18H32O2 | Linoleicacid(NBZ23)[ | 261.2213, 167.0723 |
50 | 38.675 | 255.233 | 255.2337 | 2.41 | [M-H]- | C16H32O2 | Methyl pentadecanoate [ | 209.0621, 108.0204 |
51 | 39.041 | 281.2486 | 281.2492 | 1.98 | [M-H]- | C18H34O2 | Oleic acid [ | 127.0748, 263.2380 |
52 | 39.061 | 376.3421 | 376.3403 | 2.12 | [M+NH4]+ | C21H42O4 | 2-monostearin [ | 260.2363, 95.0850 |
53 | 40.055 | 283.2643 | 283.2645 | 0.67 | [M-H]- | C18H36O2 | Octadecanoic acid [ | 96.0190, 161.0050 |
图2 牛蒡子对小鼠肺纤维化的影响
Fig.2 Effects of Arctium lappa extract on pulmonary fibrosis in mice. A: Body weight changes of the mice. B: Appearance of mouse lungs. C: HE staining of mouse lung tissue (Original magnification: ×200) and pathological scores (black arrow indicate typical areas of lung injury). D: Masson staining of mouse lung tissue (×200) and Ashcroft scores (black arrows indicate typical areas of fibrosis). ***P<0.00l, ****P<0.000l vs control group; #P<0.05, ##P<0.0l vs BLM group.
图3 牛蒡子干预TGF-β1诱导A549细胞的代谢组学分析
Fig.3 Metabolomics analysis of the differential metabolites in TGF β1-induced A549 cells with Arctium lappa extract treatment. A, B: OPLS-DA plots of different groups in negative (A) and positive (B) modes. C, D: Clustering heat map of the differential metabolites (Top 25) in negative mode (C) and positive mode (D). E: Differential metabolite-enriched metabolic pathways. F: Arctium lappa extract regulates the abundance of intermediate products in metabolic pathways. *P<0.05, **P<0.0l, ***P<0.00l vs control group; #P<0.05, ##P<0.0l, ###P<0.00l vs TGF-β1 group.
图4 牛蒡子对小鼠血浆中代谢产物的影响
Fig.4 Effects of Arctium lappa extract on production of metabolites in mouse plasma. A: Metabolites from the glycolsis pathway. B: Metabolites from the citrate cycle pathway. C: Metabolites from the pentose phosphate pathway. D: Metabolites from the amino acid pathway. **P<0.0l, ***P<0.00l, ****P<0.000l vs control group; #P<0.05, ##P<0.0l, ###P<0.00l, ####P<0.000l vs BLM group.
图5 网络药理学方法预测牛蒡子对病毒性肺炎后肺纤维化的作用机制
Fig.5 Prediction of the potential mechanism of Arctium lappa extract in treatment of PPF by network pharmacological analysis. A: Common targets of viral pneumonia and pulmonary fibrosis. B: Common targets of Arctium lappa extract and disease targets. C: Protein-protein interaction network of the key targets. D: Network of components-key targets interaction. E: Key targets of gene oncology biological process, cellular component and molecular function. F: Pathway enrichment analysis of the key targets.
PDB ID | 4GV1 6NJS 1US0 6GR5 3HHM | ||||
---|---|---|---|---|---|
AKT1 | STAT3 | SRC | HSP90AA1 | PIK3CA | |
Arctigenin | -6.507 | -6.402 | -5.763 | -6.547 | -7.426 |
Isolappaol A | -8.067 | -8.169 | -7.637 | -6.55 | -9.424 |
Lappaol A | -6.757 | -8.544 | -7.251 | -6.45 | -9.126 |
Lappaol D | -7.564 | -5.689 | -7.099 | -5.803 | -7.943 |
Matairesinol | -6.829 | -5.633 | -6.700 | -6.764 | -6.998 |
表2 牛蒡子活性成分与核心靶点的结合能
Tab.2 Binding energy of active ingredients in Arctium lappa extract with the key targets
PDB ID | 4GV1 6NJS 1US0 6GR5 3HHM | ||||
---|---|---|---|---|---|
AKT1 | STAT3 | SRC | HSP90AA1 | PIK3CA | |
Arctigenin | -6.507 | -6.402 | -5.763 | -6.547 | -7.426 |
Isolappaol A | -8.067 | -8.169 | -7.637 | -6.55 | -9.424 |
Lappaol A | -6.757 | -8.544 | -7.251 | -6.45 | -9.126 |
Lappaol D | -7.564 | -5.689 | -7.099 | -5.803 | -7.943 |
Matairesinol | -6.829 | -5.633 | -6.700 | -6.764 | -6.998 |
图8 牛蒡子在体外调控MAPK信号通路和EMT进程
Fig.8 Arctium lappa (AL) extract regulates the expression of MAPK signaling pathway and EMT in vitro. A: Effect of Arctium lappa extract on expressions of EMT marker proteins in A549 cells detected by Western blotting. B: Arctium lappa extract inhibits MAPK signaling. C: Effect of Arctium lappa extract on A549 cell viability. *P<0.05, **P<0.0l, ***P<0.00l vs control group; #P<0.05, ##P<0.0l, ###P<0.00l vs T group.
图9 牛蒡调控BLM诱导的EMT进程和MAPK信号通路
Fig.9 Arctium lappa extract regulates BLM-induced EMT and MAPK signaling pathway. *P<0.05, ***P<0.00l, ****P<0.000l vs control group; #P<0.05, ##P<0.0l, ###P<0.00l, ####P<0.000l vs BLM group.
1 | Huang WJ, Tang XX. Virus infection induced pulmonary fibrosis[J]. J Transl Med, 2021, 19(1): 496. doi:10.1186/s12967-021-03159-9 |
2 | Herold S, Becker C, Ridge KM, et al. Influenza virus-induced lung injury: pathogenesis and implications for treatment[J]. Eur Respir J, 2015, 45(5): 1463-78. doi:10.1183/09031936.00186214 |
3 | Daş TE, Sargan A, Yağmur G, et al. Viral pneumonias in forensic autopsies: evaluation and classification of histopathologic changes with microbiologic correlation[J]. Am J Forensic Med Pathol, 2016, 37(4): 255-63. doi:10.1097/paf.0000000000000261 |
4 | Han XY, Fan YQ, Alwalid O, et al. Six-month follow-up chest CT findings after severe COVID-19 pneumonia[J]. Radiology, 2021, 299(1): E177-86. doi:10.1148/radiol.2021203153 |
5 | Chen C, Chen J, Huang JN. Persistence of lymphocytopenia with CT abnormalities among patients with critical H7N9 swine-origin influenza A virus infection[J]. Jpn J Radiol, 2015, 33(10): 657-62. doi:10.1007/s11604-015-0476-4 |
6 | Mineo G, Ciccarese F, Modolon C, et al. Post-ARDS pulmonary fibrosis in patients with H1N1 pneumonia: role of follow-up CT[J]. Radiol Med, 2012, 117(2): 185-200. doi:10.1007/s11547-011-0740-3 |
7 | Pociask DA, Robinson KM, Chen K, et al. Epigenetic and transcriptomic regulation of lung repair during recovery from influenza infection[J]. Am J Pathol, 2017, 187(4): 851-63. doi:10.1016/j.ajpath.2016.12.012 |
8 | Vaz de Paula CB, Nagashima S, Liberalesso V, et al. COVID-19: immunohistochemical analysis of TGF-β signaling pathways in pulmonary fibrosis[J]. Int J Mol Sci, 2021, 23(1): 168. doi:10.3390/ijms23010168 |
9 | Schäfer SC, Funke-Chambour M, Berezowska S. Idiopathische lungenfibrose-epidemiologie, ursachen und klinischer verlauf[J]. Der Pathol, 2020, 41(1): 46-51. doi:10.1007/s00292-019-00747-x |
10 | Saito S, Alkhatib A, Kolls JK, et al. Pharmacotherapy and adjunctive treatment for idiopathic pulmonary fibrosis (IPF)[J]. J Thorac Dis, 2019, 11(): S1740-54. doi:10.21037/jtd.2019.04.62 |
11 | Zhang YK, Lu P, Qin H, et al. Traditional Chinese medicine combined with pulmonary drug delivery system and idiopathic pulmonary fibrosis: Rationale and therapeutic potential[J]. Biomed Pharmacother, 2021, 133: 111072. doi:10.1016/j.biopha.2020.111072 |
12 | 刘晓明, 张 伟. 张伟教授从痰、瘀、虚、毒论治间质性肺疾病的经验[J]. 时珍国医国药, 2015, 26(3): 706-7. doi:10.13288/j.11-2166/r.2015.01.024 |
13 | 蔡恩博, 王瑞卿, 刘德民, 等. 牛蒡子苷元现代药理作用研究进展[J]. 世界科学技术-中医药现代化, 2016, 18(1): 130-4. doi:10.11842/wst.2016.01.022 |
14 | 范红江, 王克林. 银翘散的抗病毒作用研究进展[J]. 世界中医药, 2016, 11(7): 1378-80. doi:10.3969/j.issn.1673-7202.2016.07.059 |
15 | 王琬玥, 濮宇豪, 夏睿笛, 等. FeAl-LDH@FeS x -NBC光催化降解水中的对氨基苯甲酸[J]. 吉林大学学报: 理学版, 2025, 63(2): 647-54. |
16 | Shen SD, Zhuang JJ, Chen YJ, et al. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK[J]. Bioorg Med Chem, 2013, 21(13): 3882-93. doi:10.1016/j.bmc.2013.04.010 |
17 | 王清华. UHPLC-MS/MS法同时测定六合氨基酸注射液中6个有效成分的含量[J]. 药物分析杂志, 2019, 39(2): 257-62. |
18 | Li LF, Chang KC, Zhou YM, et al. Design of an amide N-glycoside derivative of β-glucogallin: a stable, potent, and specific inhibitor of aldose reductase[J]. J Med Chem, 2014, 57(1): 71-7. doi:10.1021/jm401311d |
19 | Chyba A, Mastihubová M, Mastihuba V. Regioselective galloylation of methyl β-d-glucopyranoside by a lipase[J]. Monatsh Für Chem Chem Mon, 2016, 147(6): 1137-42. doi:10.1007/s00706-016-1696-8 |
20 | 胡小勤, 蒙 丹, 曾学文, 等. 基于UPLC-Q-TOF-MS/MS和HPLC的广东产广地龙鲜、干品主要化学成分分析[J]. 天然产物研究与开发, 2024, 36(12): 2051-63. |
21 | 杨桠楠, 黄小英, 王 尉, 等. 牛蒡子中一个新木脂素类化合物[J]. 药学学报, 2017, 52(5): 779-84. doi:10.16438/j.0513-4870.2017-0139 |
22 | Li J, Wang SP, Wang YQ, et al. Comparative metabolism study on chlorogenic acid, cryptochlorogenic acid and neochlorogenic acid using UHPLC-Q-TOF MS coupled with network pharmacology[J]. Chin J Nat Med, 2021, 19(3): 212-24. doi:10.1016/s1875-5364(21)60023-7 |
23 | Cardellina I, Meinwald J. Isolation of parasorbic acid from the cranberry plant, Vaccinium macrocarpon [J]. Phytochemistry, 1980, 19(10): 2199-200. doi:10.1016/s0031-9422(00)82223-2 |
24 | Morikawa T, Matsuda H, Nishida N, et al. Structures of new aromatics glycosides from a Japanese folk medicine, the roots of Angelica furcijuga [J]. Chem Pharm Bull (Tokyo), 2004, 52(11): 1387-90. doi:10.1248/cpb.52.1387 |
25 | 宋瑞睿, 洪占梅, 李杨杨, 等. HPLC多指标成分定量结合化学模式识别评价龙脷叶质量[J]. 现代药物与临床, 2025, 40(3): 611-7. |
26 | Di Lella S, Porta NL, Tognetti R, et al. White rot fungal impact on the evolution of simple phenols during decay of silver fir wood by UHPLC-HQOMS[J]. Phytochem Anal, 2022, 33(2): 170-83. doi:10.1002/pca.3077 |
27 | Kiselova-Kaneva Y, Galunska B, Nikolova M, et al. High resolution LC-MS/MS characterization of polyphenolic composition and evaluation of antioxidant activity of Sambucus ebulus fruit tea traditionally used in Bulgaria as a functional food[J]. Food Chem, 2022, 367: 130759. doi:10.1016/j.foodchem.2021.130759 |
28 | Zhou BX, Li J, Liang XL, et al. Transcriptome profiling of influenza A virus-infected lung epithelial (A549) cells with lariciresinol-4-β-D-glucopyranoside treatment[J]. PLoS One, 2017, 12(3): e0173058. doi:10.1371/journal.pone.0173058 |
29 | 王 珏, 王乃利, 姚新生, 等. 小花鬼针草中咖啡酰奎宁酸类成分及其抑制组胺释放活性[J]. 中草药, 2006, 37(7): 966-70. doi:10.3321/j.issn:0253-2670.2006.07.002 |
30 | Su S, Cheng XL, Wink M. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells[J]. Phytomedicine, 2015, 22(2): 301-7. doi:10.1016/j.phymed.2014.12.009 |
31 | 孔 铭, 张 健, 姚 楠, 等. HPLC同时测定络石藤中5个化学成分的含量[J]. 中国实验方剂学杂志, 2013, 19(3): 93-6. |
32 | Li J, Liang XL, Zhou BX, et al. (+)-pinoresinol-O-β-D-glucopyranoside from Eucommia ulmoides Oliver and its anti-inflammatory and antiviral effects against influenza A (H1N1) virus infection[J]. Mol Med Rep, 2019, 19(1): 563-72. doi:10.3892/mmr.2018.9696 |
33 | 冉小库, 窦德强. 牛蒡子化学成分研究[J]. 辽宁中医药大学学报, 2013, 15(7): 71-2. |
34 | 刘抗伦. 牛蒡子的化学成分研究与抗肿瘤作用初步研究[D]. 广州: 广州中医药大学, 2008. |
35 | 邓寒霜, 李筱玲, 王 欣, 等. 基于HPLC指纹图谱和一测多评多成分定量分析的连翘质量评价研究[J]. 中国药学杂志, 2024, 59(15): 1429-37. |
36 | Umehara K, Nakamura M, Miyase T, et al. Studies on differentiation inducers. VI. Lignan derivatives from Arctium fructus. (2)[J]. Chem Pharm Bull (Tokyo), 1996, 44(12): 2300-4. doi:10.1248/cpb.44.2300 |
37 | Yang BC, Xin HX, Wang FE, et al. Purification of lignans from Fructus Arctii using off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography[J]. J Sep Sci, 2017, 40(16): 3231-8. doi:10.1002/jssc.201700139 |
38 | Zhang JY, Mei JW, Wang HY, et al. Chromatographic fingerprint combined with quantitative analysis of multi-components by single-marker for quality control of total lignans from Fructus arctii by high-performance liquid chromatography[J]. Phytochem Anal, 2022, 33(8): 1214-24. doi:10.1002/pca.3172 |
39 | Park SY, Hong SS, Han XH, et al. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production[J]. Chem Pharm Bull (Tokyo), 2007, 55(1): 150-2. doi:10.1248/cpb.55.150 |
40 | 齐艳明. 牛蒡化学成分研究[D]. 齐齐哈尔: 齐齐哈尔大学, 2012. doi:10.3969/j.issn.1007-984X.2012.02.007 |
41 | 董 锋, 李子祥, 贾春媚, 等. 基于UPLC/Q-TOF MS/MS的芝麻油成分分析[J]. 中国油脂, 2022, 47(10): 130-6. |
42 | Nasr A, Yosuf I, Turki Z, et al. LC-MS metabolomics profiling of Salvia aegyptiaca L. and S. lanigera Poir. with the antimicrobial properties of their extracts[J]. BMC Plant Biol, 2023, 23(1): 340. doi:10.1186/s12870-023-04341-5 |
43 | Hildreth K, Kodani SD, Hammock BD, et al. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: a review of recent studies[J]. J Nutr Biochem, 2020, 86: 108484. doi:10.1016/j.jnutbio.2020.108484 |
44 | 胡珊珊. 牛蒡子的化学研究[D]. 昆明: 昆明医科大学, 2019. |
45 | Lutton ES, Jackson FL. The polymorphism of 1-monostearin and 1-monopalmitin[J]. J Am Chem Soc, 1948, 70(7): 2445-9. doi:10.1021/ja01187a043 |
46 | Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, et al. Efficient production of fatty acid methyl esters by a wastewater-isolated microalgae-yeast co-culture[J]. Environ Sci Pollut Res Int, 2020, 27(23): 28490-9. doi:10.1007/s11356-019-07286-1 |
47 | Hama Amin BJ, Kakamad FH, Ahmed GS, et al. Post COVID-19 pulmonary fibrosis; a meta-analysis study[J]. Ann Med Surg (Lond), 2022, 77: 103590. doi:10.1016/j.amsu.2022.103590 |
48 | Zhang PX, Li J, Liu HX, et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study[J]. Bone Res, 2020, 8: 8. doi:10.1038/s41413-020-00113-1 |
49 | Ung CY, Onoufriadis A, Parsons M, et al. Metabolic perturbations in fibrosis disease[J]. Int J Biochem Cell Biol, 2021, 139: 106073. doi:10.1016/j.biocel.2021.106109 |
50 | Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells[J]? Trends Biochem Sci, 2016, 41(3): 211-8. doi:10.1016/j.tibs.2016.01.004 |
51 | Cui HC, Xie N, Banerjee S, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation[J]. Am J Respir Cell Mol Biol, 2021, 64(1): 115-25. doi:10.1165/rcmb.2020-0360oc |
52 | 段 然, 李青原, 冯 同. 代谢重编程在特发性肺纤维化发病中的作用[J]. 基础医学与临床, 2024, 44(6): 882-6. doi:10.16352/j.issn.1001-6325.2024.06.0882 |
53 | Hu XT, Xu QY, Wan HX, et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis[J]. Lab Invest, 2020, 100(6): 801-11. doi:10.1038/s41374-020-0404-9 |
54 | Coward WR, Watts K, Feghali-Bostwick CA, et al. Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis[J]. Mol Cell Biol, 2009, 29(15): 4325-39. doi:10.1128/mcb.01776-08 |
55 | 冯金龙, 罗 培, 袁业现, 等. 三羧酸循环中间产物调控炎症和免疫的研究进展[J]. 生命科学, 2022, 34(5): 532-42. |
56 | Kato K, Papageorgiou I, Shin YJ, et al. Lung-targeted delivery of dimethyl fumarate promotes the reversal of age-dependent established lung fibrosis[J]. Antioxidants (Basel), 2022, 11(3): 492. doi:10.3390/antiox11030492 |
57 | Wang Y, Wu GR, Yue HH, et al. Kynurenine acts as a signaling molecule to attenuate pulmonary fibrosis by enhancing the AHR-PTEN axis[J]. J Adv Res, 2025, 71: 521-32. doi:10.1016/j.jare.2024.06.017 |
58 | Fang L, Chen HT, Kong RY, et al. Endogenous tryptophan metabolite 5-Methoxytryptophan inhibits pulmonary fibrosis by downregulating the TGF‑β/SMAD3 and PI3K/AKT signaling pathway[J]. Life Sci, 2020, 260: 118399. doi:10.1016/j.lfs.2020.118399 |
59 | Hamanaka RB, O'Leary EM, Witt LJ, et al. Glutamine metabolism is required for collagen protein synthesis in lung fibroblasts[J]. Am J Respir Cell Mol Biol, 2019, 61(5): 597-606. doi:10.1165/rcmb.2019-0008oc |
60 | Wang JC, Hu KL, Cai XY, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B, 2022, 12(1): 18-32. doi:10.1016/j.apsb.2021.07.023 |
61 | 刘 玲, 何振华. PI3K/Akt信号通路与肺纤维化[J]. 微生物学免疫学进展, 2017, 45(6): 80-4. doi:10.13309/j.cnki.pmi.2017.06.014 |
62 | Nie YJ, Sun L, Wu YX, et al. AKT2 regulates pulmonary inflammation and fibrosis via modulating macrophage activation[J]. J Immunol, 2017, 198(11): 4470-80. doi:10.4049/jimmunol.1601503 |
63 | Guo LF, Wang QH, Zhang DQ. microRNA-4485 ameliorates severe influenza pneumonia via inhibition of the STAT3/PI3K/AKT signaling pathway[J]. Oncol Lett, 2020, 20(5): 215. doi:10.3892/ol.2020.12078 |
64 | Goda C, Balli D, Black M, et al. Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway[J]. PLoS Genet, 2020, 16(4): e1008692. doi:10.1371/journal.pgen.1008692 |
65 | Zhang XL, Zhang XY, Huang WM, et al. The role of heat shock proteins in the regulation of fibrotic diseases[J]. Biomed Pharmacother, 2021, 135: 111067. doi:10.1016/j.biopha.2020.111067 |
66 | Rajesh R, Atallah R, Bärnthaler T. Dysregulation of metabolic pathways in pulmonary fibrosis[J]. Pharmacol Ther, 2023, 246: 108436. doi:10.1016/j.pharmthera.2023.108436 |
67 | 王 搏, 宋庆华, 唐会猛, 等. 博来霉素诱导的肺纤维化动物模型研究进展[J]. 中国实验动物学报, 2023, 31(12): 1617-28. |
[1] | 陈鑫源, 吴成挺, 李瑞迪, 潘雪芹, 张耀丹, 陶俊宇, 林才志. 双术汤通过P53/SLC7A11/GPX4通路诱导胃癌细胞铁死亡[J]. 南方医科大学学报, 2025, 45(7): 1363-1371. |
[2] | 王立明, 陈宏睿, 杜燕, 赵鹏, 王玉洁, 田燕歌, 刘新光, 李建生. 益气滋肾方通过抑制PI3K/Akt/NF-κB通路改善小鼠慢性阻塞性肺疾病的炎症反应[J]. 南方医科大学学报, 2025, 45(7): 1409-1422. |
[3] | 朱胤福, 李怡燃, 王奕, 黄颖而, 龚昆翔, 郝文波, 孙玲玲. 桂枝茯苓丸活性成分常春藤皂苷元通过抑制JAK2/STAT3通路抑制宫颈癌细胞的生长[J]. 南方医科大学学报, 2025, 45(7): 1423-1433. |
[4] | 何丽君, 陈晓菲, 闫陈昕, 师林. 扶正化积汤治疗非小细胞肺癌的分子机制:基于网络药理学及体外实验验证[J]. 南方医科大学学报, 2025, 45(6): 1143-1152. |
[5] | 管丽萍, 颜燕, 卢心怡, 李智峰, 高晖, 曹东, 侯晨曦, 曾靖宇, 李欣怡, 赵洋, 王俊杰, 方会龙. 复方积雪草减轻小鼠日本血吸虫引起的肝纤维化:通过调控TLR4/MyD88通路抑制炎症-纤维化级联反应[J]. 南方医科大学学报, 2025, 45(6): 1307-1316. |
[6] | 唐培培, 谈勇, 殷燕云, 聂晓伟, 黄菁宇, 左文婷, 李玉玲. 调周滋阴方治疗早发性卵巢功能不全的疗效、安全性及作用机制[J]. 南方医科大学学报, 2025, 45(5): 929-941. |
[7] | 梁晓涛, 熊一凡, 刘雪琪, 梁小珊, 朱晓煜, 谢炜. 活血疏风颗粒通过抑制TLR4/NF-κB通路改善慢性偏头痛小鼠的中枢敏化[J]. 南方医科大学学报, 2025, 45(5): 986-994. |
[8] | 冉念东, 刘杰, 徐剑, 张永萍, 郭江涛. 黑骨藤正丁醇萃取成分治疗大鼠阿尔茨海默病的药效学及作用机制[J]. 南方医科大学学报, 2025, 45(4): 785-798. |
[9] | 殷丽霞, 牛民主, 张可妮, 耿志军, 胡建国, 李江艳, 李静. 升麻素抑制MAPK通路调节辅助性T细胞免疫平衡改善小鼠克罗恩病样结肠炎[J]. 南方医科大学学报, 2025, 45(3): 595-602. |
[10] | 徐皓男, 张放, 黄钰莹, 姚其盛, 管悦琴, 陈浩. 百蕊草通过调节肠道菌群和调控EGFR/PI3K/Akt信号通路改善小鼠抗生素相关性腹泻[J]. 南方医科大学学报, 2025, 45(2): 285-295. |
[11] | 高俊杰, 叶开, 吴竞. 槲皮素通过调控TP53基因抑制肾透明细胞癌的增殖和迁移[J]. 南方医科大学学报, 2025, 45(2): 313-321. |
[12] | 刘莹, 李柏睿, 李永财, 常禄博, 王娇, 杨琳, 颜永刚, 屈凯, 刘继平, 张岗, 沈霞. 加味逍遥丸通过神经递质调节、抗炎抗氧化及肠道菌群调控改善大鼠的抑郁样行为[J]. 南方医科大学学报, 2025, 45(2): 347-358. |
[13] | 褚乔, 王小娜, 续佳颖, 彭荟林, 赵裕琳, 张静, 陆国玉, 王恺. 白头翁皂苷D通过多靶点和多途径抑制三阴性乳腺癌侵袭转移[J]. 南方医科大学学报, 2025, 45(1): 150-161. |
[14] | 龙秀鹏, 陶顺, 阳绅, 李素云, 饶利兵, 李莉, 张哲. 槲皮素通过抑制MAPK信号通路改善心力衰竭[J]. 南方医科大学学报, 2025, 45(1): 187-196. |
[15] | 徐朦, 陈丽娜, 吴金玉, 刘丽丽, 施美, 周灏, 张国梁. “白花蛇舌草-半枝莲”治疗原发性肝癌的机制研究:基于网络药理学、分子对接及体外实验验证[J]. 南方医科大学学报, 2025, 45(1): 80-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||