南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (12): 2527-2540.doi: 10.12122/j.issn.1673-4254.2025.12.01
• •
夏士程1,3(
), 韦慧芳1,3, 洪维灿1,3, 张钰明2,3, 尹菲玚1,3, 张贻欣1,3, 张淋淋2,3, 高琴2,3(
), 叶红伟2,3(
)
收稿日期:2025-03-04
接受日期:2025-07-15
出版日期:2025-12-20
发布日期:2025-12-22
通讯作者:
高琴,叶红伟
E-mail:12210110342@stu.bbmc.edu.cn;bbmcgq@126.com;yehongwei223@163.com
作者简介:夏士程,本科,E-mail:12210110342@stu.bbmc.edu.cn
Shicheng XIA1,3(
), Huifang WEI1,3, Weican HONG1,3, Yuming ZHANG2,3, Feiyang YIN1,3, Yixin ZHANG1,3, Linlin ZHANG2,3, Qin GAO2,3(
), Hongwei YE2,3(
)
Received:2025-03-04
Accepted:2025-07-15
Online:2025-12-20
Published:2025-12-22
Contact:
Qin GAO, Hongwei YE
E-mail:12210110342@stu.bbmc.edu.cn;bbmcgq@126.com;yehongwei223@163.com
Supported by:摘要:
目的 探讨金银花(LJF)对阿霉素(DOX)诱导的心肌损伤的保护作用及其机制。 方法 通过网络药理学、生物信息学分析与分子对接技术预测核心靶点,并通过动物实验加以验证。动物实验中,检测DOX诱导的心肌损伤及不同剂量LJF提取物治疗后小鼠心功能、心肌酶学、心肌组织形态、炎症因子及相关蛋白表达的变化。 结果 网络药理学筛选出LJF的10个核心活性成分可与AKT、EGFR、GSK3β良好结合。动物实验结果显示,与假手术组相比,DOX组小鼠心输出量、每搏输出量、左室射血分数及左室短轴缩短率显著降低,血清CK-MB、LDH水平升高,心肌IL-18、IL-1β含量增加;HE染色示心肌结构损伤;心肌组织NLRP3、caspase-1、GSDMD及GSDMD-N蛋白表达上调,EGFR蛋白表达下调,p-AKT、p-GSK3β蛋白水平降低。与DOX组相比,LJF治疗后小鼠心功能明显改善,心肌组织中IL-18、IL-1β水平降低,NLRP3、caspase-1、GSDMD及GSDMD-N蛋白表达下调, EGFR蛋白水平上调,p-AKT、p-GSK3β蛋白磷酸化水平提高。 结论 金银花可能通过靶向作用于EGFR、AKT、GSK3β调控ErbB信号通路,抑制心肌组织炎症反应与细胞焦亡,从而减轻阿霉素诱导的心肌损伤。
夏士程, 韦慧芳, 洪维灿, 张钰明, 尹菲玚, 张贻欣, 张淋淋, 高琴, 叶红伟. 金银花提取物对阿霉素诱导的小鼠心肌损伤的保护作用及其机制[J]. 南方医科大学学报, 2025, 45(12): 2527-2540.
Shicheng XIA, Huifang WEI, Weican HONG, Yuming ZHANG, Feiyang YIN, Yixin ZHANG, Linlin ZHANG, Qin GAO, Hongwei YE. Protective effect of Lonicerae Japonicae Flos extract against doxorubicin-induced myocardial injury in mice and the possible mechanisms[J]. Journal of Southern Medical University, 2025, 45(12): 2527-2540.
| Mol ID | Molecule | OB | DL | Core ingredients |
|---|---|---|---|---|
| MOL000006 | luteolin | 36.16 | 0.25 | Yes |
| MOL000098 | quercetin | 46.43 | 0.28 | Yes |
| MOL000358 | beta-sitosterol | 36.91 | 0.75 | No |
| MOL000422 | kaempferol | 41.88 | 0.24 | Yes |
| MOL000449 | Stigmasterol | 43.83 | 0.76 | No |
| MOL001494 | Mandenol | 42 | 0.19 | No |
| MOL001495 | Ethyl linolenate | 46.1 | 0.2 | No |
| MOL002707 | phytofluene | 43.18 | 0.5 | No |
| MOL002773 | beta-carotene | 37.18 | 0.58 | No |
| MOL002914 | eriodyctiol (flavanone) | 41.35 | 0.24 | Yes |
| MOL003006 | (-)-(3R,8S,9R,9aS,10aS)-9-ethenyl-8-(beta-D-glucopyranosyloxy)-2,3,9,9a,10, 10a-hexahydro-5-oxo-5H,8H-pyrano[4,3-d]oxazolo[3,2-a]pyridine-3-carboxylic acid_qt | 87.47 | 0.23 | Yes |
| MOL003014 | secologanic dibutylacetal_qt | 53.65 | 0.29 | Yes |
| MOL003036 | ZINC03978781 | 43.83 | 0.76 | No |
| MOL003044 | chryseriol | 35.85 | 0.27 | Yes |
| MOL003059 | kryptoxanthin | 47.25 | 0.57 | No |
| MOL003062 | 4,5'-Retro-.beta.,.beta.-Carotene-3,3'-dione, 4',5'-didehydro- | 31.22 | 0.55 | No |
| MOL003095 | 5-hydroxy-7-methoxy-2-(3,4,5-trimethoxyphenyl)chromone | 51.96 | 0.41 | Yes |
| MOL003101 | 7-epi-Vogeloside | 46.13 | 0.58 | No |
| MOL003108 | caeruloside C | 55.64 | 0.73 | No |
| MOL003111 | centauroside_qt | 55.79 | 0.5 | Yes |
| MOL003117 | niceracetalides B_qt | 61.19 | 0.19 | Yes |
| MOL003124 | XYLOSTOSIDINE | 43.17 | 0.64 | No |
| MOL003128 | dinethylsecologanoside | 48.46 | 0.48 | No |
Tab.1 Main active components and the core ingredients in Lonicerae Japonicae Flos (LJF)
| Mol ID | Molecule | OB | DL | Core ingredients |
|---|---|---|---|---|
| MOL000006 | luteolin | 36.16 | 0.25 | Yes |
| MOL000098 | quercetin | 46.43 | 0.28 | Yes |
| MOL000358 | beta-sitosterol | 36.91 | 0.75 | No |
| MOL000422 | kaempferol | 41.88 | 0.24 | Yes |
| MOL000449 | Stigmasterol | 43.83 | 0.76 | No |
| MOL001494 | Mandenol | 42 | 0.19 | No |
| MOL001495 | Ethyl linolenate | 46.1 | 0.2 | No |
| MOL002707 | phytofluene | 43.18 | 0.5 | No |
| MOL002773 | beta-carotene | 37.18 | 0.58 | No |
| MOL002914 | eriodyctiol (flavanone) | 41.35 | 0.24 | Yes |
| MOL003006 | (-)-(3R,8S,9R,9aS,10aS)-9-ethenyl-8-(beta-D-glucopyranosyloxy)-2,3,9,9a,10, 10a-hexahydro-5-oxo-5H,8H-pyrano[4,3-d]oxazolo[3,2-a]pyridine-3-carboxylic acid_qt | 87.47 | 0.23 | Yes |
| MOL003014 | secologanic dibutylacetal_qt | 53.65 | 0.29 | Yes |
| MOL003036 | ZINC03978781 | 43.83 | 0.76 | No |
| MOL003044 | chryseriol | 35.85 | 0.27 | Yes |
| MOL003059 | kryptoxanthin | 47.25 | 0.57 | No |
| MOL003062 | 4,5'-Retro-.beta.,.beta.-Carotene-3,3'-dione, 4',5'-didehydro- | 31.22 | 0.55 | No |
| MOL003095 | 5-hydroxy-7-methoxy-2-(3,4,5-trimethoxyphenyl)chromone | 51.96 | 0.41 | Yes |
| MOL003101 | 7-epi-Vogeloside | 46.13 | 0.58 | No |
| MOL003108 | caeruloside C | 55.64 | 0.73 | No |
| MOL003111 | centauroside_qt | 55.79 | 0.5 | Yes |
| MOL003117 | niceracetalides B_qt | 61.19 | 0.19 | Yes |
| MOL003124 | XYLOSTOSIDINE | 43.17 | 0.64 | No |
| MOL003128 | dinethylsecologanoside | 48.46 | 0.48 | No |
| Gene name | Betweenness unDir | Closeness unDir | Degree unDir |
|---|---|---|---|
| Akt1 | 3568.885 | 0.004608 | 83 |
| Stat3 | 1519.647 | 0.004149 | 66 |
| Pparg | 1574.181 | 0.004032 | 57 |
| Gsk3b | 2449.064 | 0.004082 | 55 |
| Egfr | 632.9566 | 0.003906 | 54 |
| Esr1 | 1016.3 | 0.003861 | 50 |
| Mmp9 | 1198.398 | 0.003861 | 49 |
| Hif1a | 515.0458 | 0.003876 | 49 |
| Ptgs2 | 971.437 | 0.003861 | 49 |
| Mapk14 | 546.9512 | 0.003831 | 48 |
Tab.2 Top 10 target genes based on degree values
| Gene name | Betweenness unDir | Closeness unDir | Degree unDir |
|---|---|---|---|
| Akt1 | 3568.885 | 0.004608 | 83 |
| Stat3 | 1519.647 | 0.004149 | 66 |
| Pparg | 1574.181 | 0.004032 | 57 |
| Gsk3b | 2449.064 | 0.004082 | 55 |
| Egfr | 632.9566 | 0.003906 | 54 |
| Esr1 | 1016.3 | 0.003861 | 50 |
| Mmp9 | 1198.398 | 0.003861 | 49 |
| Hif1a | 515.0458 | 0.003876 | 49 |
| Ptgs2 | 971.437 | 0.003861 | 49 |
| Mapk14 | 546.9512 | 0.003831 | 48 |
Fig.3 Venn diagram of the target genes of LJF, adriamycin-induced myocardial injury and pyroptosis-related targets (A) and the intersection genes network diagram (B).
| Mol ID | Binding energy (kJ·mol-1) | ||
|---|---|---|---|
| EGFR | AKT1 | GSK3β | |
| MOL000006 | -5.51 | -6.98 | -5.83 |
| MOL000098 | -6.07 | -6.96 | -5.8 |
| MOL000422 | -5.87 | -7.41 | -6.45 |
| MOL002914 | -5.46 | -5.36 | -5.23 |
| MOL003006 | -5.81 | -5.92 | -5.06 |
| MOL003014 | -2.13 | -3.02 | -2.25 |
| MOL003044 | -4.83 | -7.2 | -5.66 |
| MOL003095 | -5 | -6.82 | -5.49 |
| MOL003111 | -6.29 | -3.99 | -3.37 |
| MOL003117 | -5.91 | -5.31 | -4.8 |
Tab.3 Binding energy of the core ingredients of LJF with their core target genes
| Mol ID | Binding energy (kJ·mol-1) | ||
|---|---|---|---|
| EGFR | AKT1 | GSK3β | |
| MOL000006 | -5.51 | -6.98 | -5.83 |
| MOL000098 | -6.07 | -6.96 | -5.8 |
| MOL000422 | -5.87 | -7.41 | -6.45 |
| MOL002914 | -5.46 | -5.36 | -5.23 |
| MOL003006 | -5.81 | -5.92 | -5.06 |
| MOL003014 | -2.13 | -3.02 | -2.25 |
| MOL003044 | -4.83 | -7.2 | -5.66 |
| MOL003095 | -5 | -6.82 | -5.49 |
| MOL003111 | -6.29 | -3.99 | -3.37 |
| MOL003117 | -5.91 | -5.31 | -4.8 |
Fig.5 Molecular docking study of the core ingredients of LJF with their core target genes and their interactions. A: Part of the results of molecular docking results. B: The "drug-component-site of action-type of action-protein" network of EGFR. C: The "drug-component-site of action-type of action-protein" network of GSK3β. D: The "drug-component-site of action-type of action-protein" network of AKT.
Fig. 6 Cardiac echocardiographic findings of the mice and the cardiac function parameters of the mice in each group. A: Cardiac echocardiography of the mice in each group. B: Comparison of cardiac output of the mice among the 5 groups. C: Comparison of the stroke volume of the mice among the 5 groups. D: Comparison of ejection fraction of the mice among the 5 groups. E: Comparison of fraction shorting of the mice among the 5 groups. Data are presented as Mean±SD (n=6). ****P<0.0001 vs Sham group; #P<0.05, ##P<0.01, ###P<0.001, ####P<0.0001 vs DOX group.
Fig.8 Serum levels of CK-MB (A) and LDH (B) and the levels of IL-18 (C) and IL-1β (D) in the myocardial tissue of the mice in each group (Mean±SD, n=6). ****P<0.0001 vs Sham group; #P<0.05, ##P<0.01, ###P<0.001, ####P<0.0001 vs the DOX group.
Fig.9 Expression levels of NLRP3, caspase-1, GSDMD, GSDMD-N, EGFR, AKT, GSK3β, p-AKT and p-GSK3β in the myocardial tissues detected by Western blotting. A-D: Western blotting for detecting the expression levels of EGFR, AKT, p-AKT, GSK3β and p-GSK3β proteins in each group. E-I: Western blotting for detecting the expression levels of NLRP3, caspase-1, GSDMD and GSDMD-N proteins in each group. ***P<0.001, **P<0.01, *P<0.05 vs Sham group; ##P<0.01, #P<0.05 vs DOX group (Mean±SD, n=3).
| [1] | Wang M, Xie D, Zhang M, et al. Multiple ingredients of a Chinese medicine formula Sheng-Mai-San coordinately attenuate doxorubicin-induced cardiotoxicity [J]. Pharmacol Res Mod Chin Med, 2023, 8: 100281. doi:10.1016/j.prmcm.2023.100281 |
| [2] | Powers SK, Duarte JA, Le Nguyen B, et al. Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting [J]. Pflugers Arch, 2019, 471(3): 441-53. doi:10.1007/s00424-018-2227-8 |
| [3] | Li D, Zhang W, Fu H, et al. DL-3-n-butylphthalide attenuates doxorubicin-induced acute cardiotoxicity via Nrf2/HO-1 signaling pathway [J]. Heliyon, 2024, 10(5): e27644. doi:10.1016/j.heliyon.2024.e27644 |
| [4] | Chen M, Yi Y, Chen B, et al. Metformin inhibits OCTN1- and OCTN2-mediated hepatic accumulation of doxorubicin and alleviates its hepatotoxicity in mice [J]. Toxicology, 2024, 503: 153757. doi:10.1016/j.tox.2024.153757 |
| [5] | Badi RM, Khaleel EF, Satti HH, et al. Eriodictyol attenuates doxorubicin-induced nephropathy by activating the AMPK/Nrf2 signalling pathway [J]. J Tradit Complement Med, 2024, 14(2): 203-14. doi:10.1016/j.jtcme.2023.11.003 |
| [6] | Qu Y. Gasdermin D mediates endoplasmic reticulum stress via FAM134B to regulate cardiomyocyte autophagy and apoptosis in doxorubicin-induced cardiotoxicity [J]. Cell Death Dis, 2022, 13(1): 1-12. doi:10.1038/s41419-022-05400-9 |
| [7] | Meng L, Lin H, Zhang J, et al. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3 [J]. J Mol Cell Cardiol, 2019, 136: 15-26. doi:10.1016/j.yjmcc.2019.08.009 |
| [8] | Lai KH, Chen YL, Lin MF, et al. Lonicerae japonicae flos attenuates neutrophilic inflammation by inhibiting oxidative stress [J]. Antioxidants (Basel), 2022, 11(9): 1781. doi:10.3390/antiox11091781 |
| [9] | Zheng S, Liu S, Hou A, et al. Systematic review of Lonicerae Japonicae Flos: a significant food and traditional Chinese medicine [J]. Front Pharmacol, 2022, 13: 1013992. doi:10.3389/fphar.2022.1013992 |
| [10] | Wang L, Jiang Q, Hu J, et al. Research progress on chemical constituents of Lonicerae japonicae flos [J]. Biomed Res Int, 2016, 2016: 1-18. doi:10.1155/2016/8968940 |
| [11] | Han MH, Lee WS, Nagappan A, et al. Flavonoids isolated from flowers of Lonicera japonica Thunb. inhibit inflammatory responses in BV2 microglial cells by suppressing TNF-α and IL-β through PI3K/Akt/NF-κB signaling pathways [J]. Phytother Res, 2016, 30(11): 1824-32. doi:10.1002/ptr.5688 |
| [12] | Bang BW, Park D, Kwon KS, et al. BST-104, a water extract of Lonicera japonica, has a gastroprotective effect via antioxidant and anti-inflammatory activities [J]. J Med Food, 2019, 22(2): 140-51. doi:10.1089/jmf.2018.4231 |
| [13] | Wang T, Yang B, Guan Q, et al. Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors [J]. BMC Plant Biol, 2019, 19(1): 198. doi:10.1186/s12870-019-1803-1 |
| [14] | Miao H, Zhang Y, Huang Z, et al. Lonicera japonica attenuates carbon tetrachloride-induced liver fibrosis in mice: molecular mechanisms of action [J]. Am J Chin Med, 2019, 47(2): 355-72. doi:10.1142/s0192415x19500174 |
| [15] | Li W, Zhang L, He P, et al. Traditional uses, botany, phytochemistry, and pharmacology of Lonicerae japonicae flos and Lonicerae flos: a systematic comparative review [J]. J Ethnopharmacol, 2024, 322: 117278. doi:10.1016/j.jep.2023.117278 |
| [16] | Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases [J]. Signal Transduct Target Ther, 2021, 6(1): 128. doi:10.1038/s41392-021-00507-5 |
| [17] | Tao RH, Kobayashi M, Yang Y, et al. Exercise inhibits doxorubicin-induced damage to cardiac vessels and activation of hippo/YAP-mediated apoptosis [J]. Cancers, 2021, 13(11): 2740. doi:10.3390/cancers13112740 |
| [18] | Zhang G, Yang X, Su X, et al. Understanding the protective role of exosomes in doxorubicin-induced cardiotoxicity [J]. Oxid Med Cell Longev, 2022, 2022: 1-14. doi:10.1155/2022/2852251 |
| [19] | Ju YN, Zou ZW, Jia BW, et al. Ac2-26 activated the AKT1/GSK3β pathway to reduce cerebral neurons pyroptosis and improve cerebral function in rats after cardiopulmonary bypass [J]. BMC Cardiovasc Disord, 2024, 24: 266. doi:10.1186/s12872-024-03909-9 |
| [20] | Wei Y, Lan B, Zheng T, et al. GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis [J]. Nat Commun, 2023, 14: 929. doi:10.1038/s41467-023-36614-w |
| [21] | Gong Y, Qiu J, Jiang T, et al. Maltol ameliorates intervertebral disc degeneration through inhibiting PI3K/AKT/NF-κB pathway and regulating NLRP3 inflammasome-mediated pyroptosis [J]. Inflammopharmacology, 2023, 31(1): 369-84. doi:10.1007/s10787-022-01098-5 |
| [22] | Zhou P, Song NC, Zheng ZK, et al. MMP2 and MMP9 contribute to lung ischemia-reperfusion injury via promoting pyroptosis in mice [J]. BMC Pulm Med, 2022, 22: 230. doi:10.1186/s12890-022-02018-7 |
| [23] | Yue L, Liu X, Wu C, et al. Toll-like receptor 4 promotes the inflammatory response in septic acute kidney injury by promoting p38 mitogen-activated protein kinase phosphorylation [J]. J Bioenerg Biomembr, 2023, 55(5): 353-63. doi:10.1007/s10863-023-09972-9 |
| [24] | Wang Y, Wei J, Zhang P, et al. Neuregulin-1, a potential therapeutic target for cardiac repair [J]. Front Pharmacol, 2022, 13: 945206. doi:10.3389/fphar.2022.945206 |
| [25] | Wang X, Sun Q, Jiang Q, et al. Cryptotanshinone ameliorates doxorubicin-induced cardiotoxicity by targeting Akt-GSK-3β-mPTP pathway in vitro [J]. Molecules, 2021, 26(5): 1460. doi:10.3390/molecules26051460 |
| [26] | Yang K, Liu J, Zhang X, et al. H3 relaxin alleviates migration, apoptosis and pyroptosis through P2X7R-mediated nucleotide binding oligomerization domain-like receptor protein 3 inflammasome activation in retinopathy induced by hyperglycemia [J]. Front Pharmacol, 2020, 11: 603689. doi:10.3389/fphar.2020.603689 |
| [27] | Huang L. The role of IL-17 family cytokines in cardiac fibrosis [J]. Front Cardiovasc Med, 2024, 11: 1470362. doi:10.3389/fcvm.2024.1470362 |
| [28] | Liu W, Wang X, Wu W. Role and functional mechanisms of IL-17/IL-17R signaling in pancreatic cancer (Review) [J]. Oncol Rep, 2024, 52(5): 144. doi:10.3892/or.2024.8803 |
| [29] | Hedhli N, Kalinowski A, Russell KS. Cardiovascular effects of neuregulin-1/ErbB signaling: role in vascular signaling and angiogenesis [J]. Curr Pharm Des, 2014, 20(30): 4899-905. doi:10.2174/1381612819666131125151058 |
| [30] | Yenerall P, Das AK, Wang S, et al. RUVBL1/RUVBL2 ATPase activity drives PAQosome maturation, DNA replication and radioresistance in lung cancer [J]. Cell Chem Biol, 2020, 27(1): 105-21.e14. doi:10.1016/j.chembiol.2019.12.005 |
| [31] | Andrei C, Zanfirescu A, Nițulescu GM, et al. Natural active ingredients and TRPV1 modulation: focus on key chemical moieties involved in ligand-target interaction [J]. Plants, 2023, 12(2): 339. doi:10.3390/plants12020339 |
| [32] | Zhang E, Yang Y, Chen S, et al. Bone marrow mesenchymal stromal cells attenuate silica-induced pulmonary fibrosis potentially by attenuating Wnt/β-catenin signaling in rats [J]. Stem Cell Res Ther, 2018, 9: 311. doi:10.1186/s13287-018-1045-4 |
| [33] | Xiao L, Qi L, Zhang G, et al. Polygonatum sibiricum polysaccharides attenuate lipopolysaccharide-induced septic liver injury by suppression of pyroptosis via NLRP3/GSDMD signals [J]. Molecules, 2022, 27(18): 5943. doi:10.3390/molecules27185999 |
| [34] | Rogers C, Fernandes-Alnemri T, Mayes L, et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death [J]. Nat Commun, 2017, 8: 14128. doi:10.1038/ncomms14128 |
| [35] | Chen X, Tian PC, Wang K, et al. Pyroptosis: role and mechanisms in cardiovascular disease [J]. Front Cardiovasc Med, 2022, 9: 897815. doi:10.3389/fcvm.2022.897815 |
| [36] | Ye B, Shi X, Xu J, et al. Gasdermin D mediates doxorubicin-induced cardiomyocyte pyroptosis and cardiotoxicity via directly binding to doxorubicin and changes in mitochondrial damage [J]. Transl Res, 2022, 248: 36-50. doi:10.1016/j.trsl.2022.05.001 |
| [37] | Chai R, Li Y, Shui L, et al. The role of pyroptosis in inflammatory diseases [J]. Front Cell Dev Biol, 2023, 11: 1123456. doi:10.3389/fcell.2023.1173235 |
| [1] | 闫爱丽, 罗梦瑶, 常晋瑞, 李新华, 朱娟霞. 橙皮素通过调控AMPK/NLRP3通路减轻阿霉素诱导的小鼠心肌毒性[J]. 南方医科大学学报, 2025, 45(9): 1850-1858. |
| [2] | 呼琴, 金华. 清肾颗粒通过调控miR-23b及Nrf2通路改善慢性肾脏病湿热证患者的肾功能:基于网络药理学和临床试验[J]. 南方医科大学学报, 2025, 45(9): 1867-1879. |
| [3] | 杨子为, 吕畅, 董柱, 计书磊, 毕生辉, 张雪花, 王晓武. 金樱子通过调控Src-AKT1轴抑制肺动脉高压平滑肌增殖[J]. 南方医科大学学报, 2025, 45(9): 1889-1902. |
| [4] | 云琦, 杜若丽, 贺玉莹, 张贻欣, 王佳慧, 叶红伟, 李正红, 高琴. 肉桂酸通过抑制TLR4减轻阿霉素诱导的小鼠心肌损伤铁死亡的发生[J]. 南方医科大学学报, 2025, 45(9): 1946-1958. |
| [5] | 饶璐, 丁家和, 魏江平, 阳勇, 张小梅, 王计瑞. 槐花通过抑制PI3K/AKT通路减轻炎症反应治疗银屑病[J]. 南方医科大学学报, 2025, 45(9): 1989-1996. |
| [6] | 罗善玉, 朱强, 闫玉翡, 纪宗红, 邹华杰, 张瑞霞, 巴应贵. 低氧环境下NLRP3信号通路促进非酒精性脂肪性肝炎小鼠的肝细胞焦亡[J]. 南方医科大学学报, 2025, 45(9): 2026-2033. |
| [7] | 陈鑫源, 吴成挺, 李瑞迪, 潘雪芹, 张耀丹, 陶俊宇, 林才志. 双术汤通过P53/SLC7A11/GPX4通路诱导胃癌细胞铁死亡[J]. 南方医科大学学报, 2025, 45(7): 1363-1371. |
| [8] | 周海忆, 何斯怡, 韩瑞芳, 关永格, 董丽娟, 宋阳. 艾灸通过调控miR-223-3p/NLRP3焦亡通路修复薄型子宫内膜[J]. 南方医科大学学报, 2025, 45(7): 1380-1388. |
| [9] | 王立明, 陈宏睿, 杜燕, 赵鹏, 王玉洁, 田燕歌, 刘新光, 李建生. 益气滋肾方通过抑制PI3K/Akt/NF-κB通路改善小鼠慢性阻塞性肺疾病的炎症反应[J]. 南方医科大学学报, 2025, 45(7): 1409-1422. |
| [10] | 朱胤福, 李怡燃, 王奕, 黄颖而, 龚昆翔, 郝文波, 孙玲玲. 桂枝茯苓丸活性成分常春藤皂苷元通过抑制JAK2/STAT3通路抑制宫颈癌细胞的生长[J]. 南方医科大学学报, 2025, 45(7): 1423-1433. |
| [11] | 何丽君, 陈晓菲, 闫陈昕, 师林. 扶正化积汤治疗非小细胞肺癌的分子机制:基于网络药理学及体外实验验证[J]. 南方医科大学学报, 2025, 45(6): 1143-1152. |
| [12] | 李国永, 黎仁玲, 刘艺婷, 柯宏霞, 李菁, 王新华. 牛蒡子治疗小鼠病毒性肺炎后肺纤维化的机制:基于代谢组学、网络药理学和实验验证方法[J]. 南方医科大学学报, 2025, 45(6): 1185-1199. |
| [13] | 管丽萍, 颜燕, 卢心怡, 李智峰, 高晖, 曹东, 侯晨曦, 曾靖宇, 李欣怡, 赵洋, 王俊杰, 方会龙. 复方积雪草减轻小鼠日本血吸虫引起的肝纤维化:通过调控TLR4/MyD88通路抑制炎症-纤维化级联反应[J]. 南方医科大学学报, 2025, 45(6): 1307-1316. |
| [14] | 唐培培, 谈勇, 殷燕云, 聂晓伟, 黄菁宇, 左文婷, 李玉玲. 调周滋阴方治疗早发性卵巢功能不全的疗效、安全性及作用机制[J]. 南方医科大学学报, 2025, 45(5): 929-941. |
| [15] | 卞芬兰, 倪诗垚, 赵鹏, 戚毛男星, 唐碧, 王洪巨, 康品方, 刘进军. 积雪草苷通过抑制NLRP3炎症体介导的细胞焦亡减轻大鼠心肌缺血再灌注损伤[J]. 南方医科大学学报, 2025, 45(5): 977-985. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||