Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (7): 1423-1433.doi: 10.12122/j.issn.1673-4254.2025.07.08
Previous Articles Next Articles
Yinfu ZHU1(), Yiran LI1, Yi WANG1, Yinger HUANG2, Kunxiang GONG3, Wenbo HAO1(
), Lingling SUN4(
)
Received:
2025-03-13
Online:
2025-07-20
Published:
2025-07-17
Contact:
Wenbo HAO, Lingling SUN
E-mail:1227643411@qq.com;haowa@126.com;sunlingling813@163.com
Supported by:
Yinfu ZHU, Yiran LI, Yi WANG, Yinger HUANG, Kunxiang GONG, Wenbo HAO, Lingling SUN. Therapeutic mechanism of hederagenin, an active component in Guizhi Fuling Pellets, against cervical cancer in nude mice[J]. Journal of Southern Medical University, 2025, 45(7): 1423-1433.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.07.08
Fig.1 Construction of the "Traditional Chinese Medicine-Active Ingredients-Targets" Network. A:Venn diagram of the drug targets and cervical cancer targets. B: Traditional Chinese medicine-active ingredient-target network of Guizhi Fuling Pellets against cervical cancer.
Name | Betweenness centrality | Closeness centrality | Degree | Eccentricity | Neighborhood connectivity | Number of undirected edges | Type |
---|---|---|---|---|---|---|---|
Quercetin | 0.12874832 | 0.465960666 | 44 | 4 | 32.38636364 | 44 | ingredient |
Beta-sitosterol | 0.042529052 | 0.447024673 | 26 | 4 | 60.03846154 | 26 | ingredient |
Kaempferol | 0.054556646 | 0.450951684 | 31 | 4 | 50.90322581 | 31 | ingredient |
(+)-Catechin | 0.01968019 | 0.426002766 | 15 | 5 | 94.73333333 | 15 | ingredient |
Hederagenin | 0.108300219 | 0.443165468 | 17 | 5 | 59.58823529 | 17 | ingredient |
Stigmasterol | 0.011819554 | 0.421340629 | 16 | 5 | 62.625 | 16 | ingredient |
Sitosterol | 0.011819554 | 0.421340629 | 16 | 5 | 62.625 | 16 | ingredient |
Luteolin | 0.041269784 | 0.42837274 | 22 | 4 | 51.40909091 | 22 | ingredient |
Baicalein | 0.022662695 | 0.422496571 | 18 | 4 | 76.83333333 | 18 | ingredient |
Campesterol | 0.003171002 | 0.417910448 | 10 | 5 | 112.4 | 10 | ingredient |
Tab.1 Topology parameters of the herbs and compounds in the network
Name | Betweenness centrality | Closeness centrality | Degree | Eccentricity | Neighborhood connectivity | Number of undirected edges | Type |
---|---|---|---|---|---|---|---|
Quercetin | 0.12874832 | 0.465960666 | 44 | 4 | 32.38636364 | 44 | ingredient |
Beta-sitosterol | 0.042529052 | 0.447024673 | 26 | 4 | 60.03846154 | 26 | ingredient |
Kaempferol | 0.054556646 | 0.450951684 | 31 | 4 | 50.90322581 | 31 | ingredient |
(+)-Catechin | 0.01968019 | 0.426002766 | 15 | 5 | 94.73333333 | 15 | ingredient |
Hederagenin | 0.108300219 | 0.443165468 | 17 | 5 | 59.58823529 | 17 | ingredient |
Stigmasterol | 0.011819554 | 0.421340629 | 16 | 5 | 62.625 | 16 | ingredient |
Sitosterol | 0.011819554 | 0.421340629 | 16 | 5 | 62.625 | 16 | ingredient |
Luteolin | 0.041269784 | 0.42837274 | 22 | 4 | 51.40909091 | 22 | ingredient |
Baicalein | 0.022662695 | 0.422496571 | 18 | 4 | 76.83333333 | 18 | ingredient |
Campesterol | 0.003171002 | 0.417910448 | 10 | 5 | 112.4 | 10 | ingredient |
Fig.2 GO and KEGG enrichment analysis of the intersection targets. A: PPI network constructed and visualized using Cytoscape v10.0.0. Nodes are colored based on the degrees. The degree values range from large to small, following a continuous mapping from yellow to pink. B: Top 10 items for the biological process (BP), cellular component (CC), and molecular function (MF) enrichment analysis in the GO enrichment analysis. The orange section represents the biological processes. The green part represents the cellular component. The blue part represents the molecular function. C: Top 10 items of the KEGG pathway enrichment analysis.
Fig.3 Molecular docking results of the target proteins and the active molecules. A: Heatmap of the molecular docking fraction showing the binding energy of target proteins and active compounds (kcal/mol). B: Molecular docking model for JAK 2 and hederagenin. C: Molecular docking model for GSR and campesterol. D: Molecular docking model for HTR 3 A and beta-sitosterol.
Sample | GABRA1 | PTK2 | JAK2 | HTR3A | GSR | IL-17 |
---|---|---|---|---|---|---|
(+)-catechin | -8.1 | -6.7 | -8.7 | -8.6 | -8.7 | -9.5 |
Baicalein | -8.1 | -6.9 | -9.4 | -8.8 | -8.7 | -9.2 |
Beta-sitosterol | -4.3 | -8.2 | -9.6 | -10.8 | -10.7 | -10.4 |
Campesterol | -4.6 | -8 | -9.4 | -11.3 | -10.5 | -9.2 |
Hederagenin | -8.6 | -6.9 | -10.7 | -9.4 | -11.1 | -10.2 |
Kaempferol | -7.7 | -7 | -8.8 | -8.5 | -8.9 | -8.8 |
Luteolin | -8.5 | -8.5 | -9 | -9 | -9 | -9.1 |
Sitosterol | -4.3 | -7.6 | -9.4 | -10.2 | -10.8 | -9.4 |
Quercetin | -8.1 | -8.9 | -9.6 | -9.2 | -9.1 | -8.8 |
Stigmasterol | -4.7 | -8.6 | -10.0 | -10.8 | -11 | -9.3 |
Isocorypalmine | -8.0 | -8.2 | -8.2 | -8.9 | -9.7 | -8.7 |
Tab.2 Binding energy between the predicted active components and targets
Sample | GABRA1 | PTK2 | JAK2 | HTR3A | GSR | IL-17 |
---|---|---|---|---|---|---|
(+)-catechin | -8.1 | -6.7 | -8.7 | -8.6 | -8.7 | -9.5 |
Baicalein | -8.1 | -6.9 | -9.4 | -8.8 | -8.7 | -9.2 |
Beta-sitosterol | -4.3 | -8.2 | -9.6 | -10.8 | -10.7 | -10.4 |
Campesterol | -4.6 | -8 | -9.4 | -11.3 | -10.5 | -9.2 |
Hederagenin | -8.6 | -6.9 | -10.7 | -9.4 | -11.1 | -10.2 |
Kaempferol | -7.7 | -7 | -8.8 | -8.5 | -8.9 | -8.8 |
Luteolin | -8.5 | -8.5 | -9 | -9 | -9 | -9.1 |
Sitosterol | -4.3 | -7.6 | -9.4 | -10.2 | -10.8 | -9.4 |
Quercetin | -8.1 | -8.9 | -9.6 | -9.2 | -9.1 | -8.8 |
Stigmasterol | -4.7 | -8.6 | -10.0 | -10.8 | -11 | -9.3 |
Isocorypalmine | -8.0 | -8.2 | -8.2 | -8.9 | -9.7 | -8.7 |
JAK2-hederagenin | GSR-campesterol | HTR3A-beta-sitosterol | |
---|---|---|---|
Chain A | LYS607 HIS608 GLU652 LYS655 GLN656 TRP659 HIS662 GLU666 PRO692 PHE694 PHE798 ARG799 ALA800 ILE802 ARG803 ASN806 | LYS67 TRP70 ASN71 VAL74 PHE78 PRO376 PRO405 MET406 TYR407 LEU438 GLY439 ASP441 GLU442 PRO468 SER470 | PHE244 VAL247 SER248 LEU249 LEU251 PRO252 PHE255 LEU256 THR279 LEU280 LEU282 GLY283 TYR284 VAL286 PHE287 ILE290 VAL291 ASP293 THR294 |
Chain B | ASP768 ARG769 HIS770 GLN771 LEU772 ASP789 TYR790 GLU791 HIS794 | LEU281 SER285 LEU288 VAL291 SER292 LEU295 PRO296 ALA297 THR298 ALA299 GLY301 THR302 PRO303 GLY306 VAL307 PHE309 VAL310 MET313 ALA314 VAL317 |
Tab. 3 Active curpockets of the amino acids
JAK2-hederagenin | GSR-campesterol | HTR3A-beta-sitosterol | |
---|---|---|---|
Chain A | LYS607 HIS608 GLU652 LYS655 GLN656 TRP659 HIS662 GLU666 PRO692 PHE694 PHE798 ARG799 ALA800 ILE802 ARG803 ASN806 | LYS67 TRP70 ASN71 VAL74 PHE78 PRO376 PRO405 MET406 TYR407 LEU438 GLY439 ASP441 GLU442 PRO468 SER470 | PHE244 VAL247 SER248 LEU249 LEU251 PRO252 PHE255 LEU256 THR279 LEU280 LEU282 GLY283 TYR284 VAL286 PHE287 ILE290 VAL291 ASP293 THR294 |
Chain B | ASP768 ARG769 HIS770 GLN771 LEU772 ASP789 TYR790 GLU791 HIS794 | LEU281 SER285 LEU288 VAL291 SER292 LEU295 PRO296 ALA297 THR298 ALA299 GLY301 THR302 PRO303 GLY306 VAL307 PHE309 VAL310 MET313 ALA314 VAL317 |
Fig. 4 Hederagenin inhibits growth of cervical cancer cells in vitro. A: IC50 curve of hederagenin against U14 cells. B, C: Viability of U14 cells treated with high-concentration (B) and low-concentration (C) hederagenin. D, E: Western blotting and quantitative analysis of STAT3 phosphorylation inhibited by hederagenin treatment for 72 h. *P<0.05, ***P<0.001.
Fig.5 Hederagenin inhibits growth of cervical cancer xenografts in nude mice. A: Gross observation of the dissected tumors. B: Tumor growth curve during hederagenin treatment. C: HE staining and Ki-67 immunohistochemistry of the tumor sections. D: Weight of the tumors. E: Body weight curve of the nude mice during hederagenin treatment. *P<0.05.
[1] | Fan Q, Huang T, Sun X, et al. miR-130a-3p promotes cell proliferation and invasion by targeting estrogen receptor α and androgen receptor in cervical cancer[J]. Exp Ther Med, 2021, 21(5): 414. doi:10.3892/etm.2021.9858 |
[2] | Ping P, Li J, Xu X. The value of plasma omega-3 polyunsaturated fatty acids in predicting the response and prognosis of cervical squamous cell carcinoma patients to concurrent chemoradiotherapy[J]. Front Pharmacol, 2024, 15: 1379508. doi:10.3389/fphar.2024.1379508 |
[3] | Vogel M, Bachmann MF. Special issue "virus-like particle vaccines"[J]. Viruses, 2020, 12(8): E872. doi:10.3390/v12080872 |
[4] | 曲玉婷, 宋凤丽, 康 宁, 等. 李仝教授用桂枝茯苓丸加减治疗宫颈癌的经验举隅[J]. 内蒙古中医药, 2022, 41(1): 84-5. |
[5] | 张凌霄. 桂枝茯苓汤辅治晚期宫颈癌的临床疗效分析[J]. 中西医结合心血管病电子杂志, 2020, 8(7): 167, 177. |
[6] | 马学琴, 张丽敏, 虎峻瑞.基于网络药理学的桂枝茯苓丸治疗宫颈癌的机制研究[J].临床医学研究与实践, 2021, 6(8): 7-11. doi:10.19347/j.cnki.2096-1413.202108002 |
[7] | Dong Y, Zheng Y, Zhu L, et al. Hua-Tan-Sheng-Jing decoction treats obesity with oligoasthenozoospermia by up-regulating the PI3K-AKT and down-regulating the JNK MAPK signaling pathways: At the crossroad of obesity and oligoasthenozoospermia[J]. Front Pharmacol, 2022, 13: 896434. doi:10.3389/fphar.2022.896434 |
[8] | Sun R, Liu C, Liu J, et al. Integrated network pharmacology and experimental validation to explore the mechanisms underlying naringenin treatment of chronic wounds[J]. Sci Rep, 2023, 13(1): 132. doi:10.1038/s41598-022-26043-y |
[9] | Wang TY, Fahrmann JF, Lee H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(1): 136-50.e5. doi:10.1016/j.cmet.2017.11.001 |
[10] | Pennel KAF, Hatthakarnkul P, Wood CS, et al. JAK/STAT3 represents a therapeutic target for colorectal cancer patients with stromal-rich tumors[J]. J Exp Clin Cancer Res, 2024, 43(1): 64. doi:10.1186/s13046-024-02958-4 |
[11] | Han Y, Zhang Y, Tian Y, et al. The interaction of the IFNγ/JAK/STAT1 and JAK/STAT3 signalling pathways in EGFR-mutated lung adenocarcinoma cells[J]. J Oncol, 2022, 2022: 9016296. doi:10.1155/2022/9016296 |
[12] | Wang L, Wang F, Fu S, et al. Analysis of genetic variation in human papillomavirus type 16 E1 and E2 in women with cervical infection in Xinjiang, China[J]. BMC Med Genomics, 2021, 14(1): 268. doi:10.1186/s12920-021-01120-9 |
[13] | Yu L, Xia Q, Sun Z, et al. Efficacy of acupoint application on in vitro fertilization outcome in patients with polycystic ovary syndrome: a UHPLC-MS-based metabolomic study[J]. Evid Based Com-plement Alternat Med, 2022: 9568417. doi:10.1155/2022/9568417 |
[14] | Liu XY, Chen LL, Sun P, et al. Guizhi Fuling Formulation: a review on chemical constituents, quality control, pharmacokinetic studies, pharmacological properties, adverse reactions and clinical applic-ations[J]. J Ethnopharmacol, 2024, 319: 117277. doi:10.1016/j.jep.2023.117277 |
[15] | Jia Y, Li Y, Du N, et al. LIMK1 promotes the development of cervical cancer by up-regulating the ROS/Src-FAK/cofilin signaling pathway[J]. Aging: Albany NY, 2024, 16(13): 11090-102. doi:10.18632/aging.206007 |
[16] | Du Q, Liu P, Zhang C, et al. FASN promotes lymph node metastasis in cervical cancer via cholesterol reprogramming and lymphangio-genesis[J]. Cell Death Dis, 2022, 13(5): 488. doi:10.1038/s41419-022-04926-2 |
[17] | Imran M, Ghorat F, Ul-Haq I, et al. Lycopene as a natural antioxidant used to prevent human health disorders[J]. Antioxidants: Basel, 2020, 9(8): E706. doi:10.3390/antiox9080706 |
[18] | Wang Y, Li J, Gao Y, et al. Hippo kinases regulate cell junctions to inhibit tumor metastasis in response to oxidative stress[J]. Redox Biol, 2019, 26: 101233. doi:10.1016/j.redox.2019.101233 |
[19] | Vrzal R, Frauenstein K, Proksch P, et al. Khellin and visnagin differentially modulate AHR signaling and downstream CYP1A activity in human liver cells[J]. PLoS One, 2013, 8(9): e74917. doi:10.1371/journal.pone.0074917 |
[20] | Siegel EM, Patel N, Lu B, et al. Circulating biomarkers of iron storage and clearance of incident human papillomavirus infection[J]. Cancer Epidemiol Biomarkers Prev, 2012, 21(5): 859-65. doi:10.1158/1055-9965.epi-12-0073 |
[21] | Guo N, Shen G, Zhang Y, et al. Interleukin-17 promotes migration and invasion of human cancer cells through upregulation of MTA1 expression[J]. Front Oncol, 2019, 9: 546. doi:10.3389/fonc.2019.00546 |
[22] | Alves JJP, De Medeiros Fernandes TAA, De Araújo JMG, et al. Th17 response in patients with cervical cancer[J]. Oncol Lett, 2018, 16(5): 6215-27. doi:10.1016/j.bjp.2017.03.006 |
[23] | Cheng X, Wang J, Liu C, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway[J]. J Exp Clin Cancer Res, 2021, 40(1): 199. doi:10.1186/s13046-021-01999-3 |
[24] | Ding H, Zhang L, Zhang C, et al. Screening of significant biomarkers related to prognosis of cervical cancer and functional study based on lncRNA-associated CeRNA regulatory network[J]. Comb Chem High Throughput Screen, 2021, 24(3): 472-82. doi:10.2174/1386207323999200729113028 |
[25] | Zhao MT, Whitworth KM, Lin H, et al. Porcine skin-derived progenitor (SKP) spheres and neurospheres: Distinct "stemness" identified by microarray analysis[J]. Cell Reprogram, 2010, 12(3): 329-45. doi:10.1089/cell.2009.0116 |
[26] | Morgan EL, Macdonald A. JAK2 inhibition impairs proliferation and sensitises cervical cancer cells to cisplatin-induced cell death[J]. Cancers: Basel, 2019, 11(12): E1934. doi:10.3390/cancers11121934 |
[27] | Simmons AN, Arce E, Lovero KL, et al. Subchronic SSRI administration reduces Insula response during affective anticipation in healthy volunteers[J]. Int J Neuropsychopharmacol, 2009, 12(8): 1009-20. doi:10.1017/s1461145709990149 |
[28] | Di Carlo E, Sorrentino C. Oxidative stress and age-related tumors[J]. Antioxidants: Basel, 2024, 13(9): 1109. doi:10.3390/antiox13091109 |
[29] | Xia Y, Wang G, Jiang M, et al. A novel biological activity of the STAT3 inhibitor stattic in inhibiting glutathione reductase and suppressing the tumorigenicity of human cervical cancer cells via a ROS-dependent pathway[J]. Onco Targets Ther, 2021, 14: 4047-60. doi:10.2147/ott.s313507 |
[30] | 朱 燕, 伍 钢, 欧阳礼辰, 等. 神经节苷脂GM3对人宫颈癌HeLa细胞凋亡和血管内皮生长因子表达的影响[J]. 肿瘤防治研究, 2015, 42(5): 450-3. |
[31] | Lu SH, Guan JH, Huang YL, et al. Experimental study of antiatherosclerosis effects with hederagenin in rats[J]. Evid Based Complement Alternat Med, 2015, 2015: 456354. doi:10.1155/2015/456354 |
[32] | Liu BX, Zhou JY, Li Y, et al. Hederagenin from the leaves of ivy (Hedera helix L.) induces apoptosis in human LoVo colon cells through the mitochondrial pathway[J]. BMC Complement Altern Med, 2014, 14: 412. doi:10.1186/1472-6882-14-412 |
[33] | Tu YB, Tan LH, Tao HX, et al. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products[J]. Phytomedicine, 2023, 116: 154862. doi:10.1016/j.phymed.2023.154862 |
[34] | Liu X, Zhang Q, Wang P, et al. Dissection of targeting molecular mechanisms of celastrol-induced nephrotoxicity via A combined deconvolution strategy of chemoproteomics and metabolomics[J]. Int J Biol Sci, 2024, 20(12): 4601-17. doi:10.7150/ijbs.91751 |
[1] | Xinyuan CHEN, Chengting WU, Ruidi LI, Xueqin PAN, Yaodan ZHANG, Junyu TAO, Caizhi LIN. Shuangshu Decoction inhibits growth of gastric cancer cell xenografts by promoting cell ferroptosis via the P53/SLC7A11/GPX4 axis [J]. Journal of Southern Medical University, 2025, 45(7): 1363-1371. |
[2] | Liming WANG, Hongrui CHEN, Yan DU, Peng ZHAO, Yujie WANG, Yange TIAN, Xinguang LIU, Jiansheng LI. Yiqi Zishen Formula ameliorates inflammation in mice with chronic obstructive pulmonary disease by inhibiting the PI3K/Akt/NF-κB signaling pathway [J]. Journal of Southern Medical University, 2025, 45(7): 1409-1422. |
[3] | Lijun HE, Xiaofei CHEN, Chenxin YAN, Lin SHI. Inhibitory effect of Fuzheng Huaji Decoction against non-small cell lung cancer cells in vitro and the possible molecular mechanism [J]. Journal of Southern Medical University, 2025, 45(6): 1143-1152. |
[4] | Guoyong LI, Renling LI, Yiting LIU, Hongxia KE, Jing LI, Xinhua WANG. Therapeutic mechanism of Arctium lappa extract for post-viral pneumonia pulmonary fibrosis: a metabolomics, network pharmacology analysis and experimental verification [J]. Journal of Southern Medical University, 2025, 45(6): 1185-1199. |
[5] | Yanxiu MO, Yang SHU, Yulan MO, Juntong LIU, Ouou XU, Huafei DENG, Qiben WANG. CRISPR-Cas9-mediated CDC20 gene knockout inhibits cervical cancer cell proliferation, invasion and metastasis [J]. Journal of Southern Medical University, 2025, 45(6): 1200-1211. |
[6] | Liping GUAN, Yan YAN, Xinyi LU, Zhifeng LI, Hui GAO, Dong CAO, Chenxi HOU, Jingyu ZENG, Xinyi LI, Yang ZHAO, Junjie WANG, Huilong FANG. Compound Centella asiatica formula alleviates Schistosoma japonicum-induced liver fibrosis in mice by inhibiting the inflammation-fibrosis cascade via regulating the TLR4/MyD88 pathway [J]. Journal of Southern Medical University, 2025, 45(6): 1307-1316. |
[7] | Peipei TANG, Yong TAN, Yanyun YIN, Xiaowei NIE, Jingyu HUANG, Wenting ZUO, Yuling LI. Tiaozhou Ziyin recipe for treatment of premature ovarian insufficiency: efficacy, safety and mechanism [J]. Journal of Southern Medical University, 2025, 45(5): 929-941. |
[8] | Xiaotao LIANG, Yifan XIONG, Xueqi LIU, Xiaoshan LIANG, Xiaoyu ZHU, Wei XIE. Huoxue Shufeng Granule alleviates central sensitization in chronic migraine mice via TLR4/NF-κB inflammatory pathway [J]. Journal of Southern Medical University, 2025, 45(5): 986-994. |
[9] | Niandong RAN, Jie LIU, Jian XU, Yongping ZHANG, Jiangtao GUO. n-butanol fraction of ethanol extract of Periploca forrestii Schltr.: its active components, targets and pathways for treating Alcheimer's disease in rats [J]. Journal of Southern Medical University, 2025, 45(4): 785-798. |
[10] | Yaqing YUE, Zhaoxia MU, Xibo WANG, Yan LIU. Aurora-A overexpression promotes cervical cancer cell invasion and metastasis by activating the NF-κBp65/ARPC4 signaling axis [J]. Journal of Southern Medical University, 2025, 45(4): 837-843. |
[11] | Haonan¹ XU, Fang³ ZHANG, Yuying² HUANG, Qisheng⁴ YAO, Yueqin⁴ GUAN, Hao CHEN. Thesium chinense Turcz. alleviates antibiotic-associated diarrhea in mice by modulating gut microbiota structure and regulating the EGFR/PI3K/Akt signaling pathway [J]. Journal of Southern Medical University, 2025, 45(2): 285-295. |
[12] | Junjie GAO, Kai YE, Jing WU. Quercetin inhibits proliferation and migration of clear cell renal cell carcinoma cells by regulating TP53 gene [J]. Journal of Southern Medical University, 2025, 45(2): 313-321. |
[13] | Ying LIU, Borui LI, Yongcai LI, Lubo CHANG, Jiao WANG, Lin YANG, Yonggang YAN, Kai QV, Jiping LIU, Gang ZHANG, Xia SHEN. Jiawei Xiaoyao Pills improves depression-like behavior in rats by regulating neurotransmitters, inhibiting inflammation and oxidation and modulating intestinal flora [J]. Journal of Southern Medical University, 2025, 45(2): 347-358. |
[14] | Qiao CHU, Xiaona WANG, Jiaying XU, Huilin PENG, Yulin ZHAO, Jing ZHANG, Guoyu LU, Kai WANG. Pulsatilla saponin D inhibits invasion and metastasis of triple-negative breast cancer cells through multiple targets and pathways [J]. Journal of Southern Medical University, 2025, 45(1): 150-161. |
[15] | Xiupeng LONG, Shun TAO, Shen YANG, Suyun LI, Libing RAO, Li LI, Zhe ZHANG. Quercetin improves heart failure by inhibiting cardiomyocyte apoptosis via suppressing the MAPK signaling pathway [J]. Journal of Southern Medical University, 2025, 45(1): 187-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||