Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (1): 59-64.doi: 10.12122/j.issn.1673-4254.2025.01.08
Previous Articles Next Articles
Chao ZHOU1(
), Jingjing ZHANG1, Qiao TANG2, Shuangnan FU1, Ning ZHANG1, Zhaoyun HE1, Jin ZHANG1, Tianyi ZHANG1, Pengcheng LIU1, Man GONG1,2(
)
Received:2024-02-12
Online:2025-01-20
Published:2025-01-20
Contact:
Man GONG
E-mail:379317021@qq.com;gongman302 @163.com
Supported by:Chao ZHOU, Jingjing ZHANG, Qiao TANG, Shuangnan FU, Ning ZHANG, Zhaoyun HE, Jin ZHANG, Tianyi ZHANG, Pengcheng LIU, Man GONG. Value of serum tryptophan in stratified management of 90-day mortality risk in patients with hepatitis B virus-related acute-on-chronic liver failure: a multicenter retrospective study[J]. Journal of Southern Medical University, 2025, 45(1): 59-64.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.01.08
| Parameter | All subjects (n=180) | Survivors (n=127) | Deceased (n=53) | P |
|---|---|---|---|---|
| Age (year) | 44.6±10.6 | 39.6±11.2 | 44.3±9.6 | 0.008 |
| Male [n (%)] | 162 (90.0) | 114 (89.8) | 48 (90.6) | 0.870 |
| Serum albumin (g/L) | 32.4±6.3 | 33.1±7.0 | 30.8±4.0 | 0.032 |
| Serum globulin (g/L) | 29.9±8.2 | 30.2±8.0 | 29.4±8.8 | 0.538 |
| Total bilirubin (mg/dL) | 19.7±7.1 | 18.1±6.2 | 23.6±7.8 | <0.001 |
| ALT (U/L) | 145 (63-360) | 151(63-353) | 183(74-458) | 0.255 |
| AST (U/L) | 153 (86-299) | 143(85-285) | 189(110-363) | 0.100 |
| Creatinine (mg/dL) | 0.84±0.23 | 0.82±0.19 | 0.86±0.32 | 0.437 |
| International normalized ratio | 2.2±0.6 | 2.1±0.5 | 2.5±0.8 | <0.001 |
| Leukocyte (×109/L) | 7.2±3.2 | 7.2±3.0 | 7.2±3.5 | 0.889 |
| Hemoglobin content (g/L) | 122±29 | 122±28 | 120±29 | 0.608 |
| Thrombocyte (×109/L) | 109±57 | 118±58 | 88±49 | 0.001 |
| Ammonia(mmol/L) | 61.6±7.2 | 70.4±7.9 | 57.1±7.7 | 0.120 |
| HBV DNA (log10 IU/mL) | 3.4±2.2 | 3.5±2.1 | 3.2±2.4 | 0.505 |
| HBsAg (>250 KIU/mL) | 112 (62.2) | 83 (65.4) | 29 (54.7) | 0.180 |
| MELD | 24.2±4.8 | 23.6±4.4 | 25.7±5.3 | 0.011 |
| MELD-Na | 25.9±6.8 | 24.8±5.3 | 28.7±9.1 | 0.005 |
| AARC score | 7.8±1.3 | 7.5±1.1 | 8.3±1.5 | 0.001 |
| HE [n (%)] | 19 (10.6) | 9 (7.1) | 10 (18.9) | 0.001 |
| SBP [n (%)] | 44 (24.6) | 28 (22.0) | 16 (30.8) | 0.219 |
| Hyponatremia [n (%)] | 50 (28.2) | 32 (25.6) | 18 (34.6) | 0.225 |
| KD [n (%)] | 21 (11.7) | 9 (7.1) | 12 (22.6) | 0.003 |
| Trp (pg/mL) | 11.67±6.83 | 13.32±7.15 | 7.31±3.73 | <0.001 |
| HBV reactivation [n (%)] | 162 (90.0) | 113(89.0) | 49 (92.5) | 0.479 |
Tab.1 Baseline demographic and clinical data of the patients
| Parameter | All subjects (n=180) | Survivors (n=127) | Deceased (n=53) | P |
|---|---|---|---|---|
| Age (year) | 44.6±10.6 | 39.6±11.2 | 44.3±9.6 | 0.008 |
| Male [n (%)] | 162 (90.0) | 114 (89.8) | 48 (90.6) | 0.870 |
| Serum albumin (g/L) | 32.4±6.3 | 33.1±7.0 | 30.8±4.0 | 0.032 |
| Serum globulin (g/L) | 29.9±8.2 | 30.2±8.0 | 29.4±8.8 | 0.538 |
| Total bilirubin (mg/dL) | 19.7±7.1 | 18.1±6.2 | 23.6±7.8 | <0.001 |
| ALT (U/L) | 145 (63-360) | 151(63-353) | 183(74-458) | 0.255 |
| AST (U/L) | 153 (86-299) | 143(85-285) | 189(110-363) | 0.100 |
| Creatinine (mg/dL) | 0.84±0.23 | 0.82±0.19 | 0.86±0.32 | 0.437 |
| International normalized ratio | 2.2±0.6 | 2.1±0.5 | 2.5±0.8 | <0.001 |
| Leukocyte (×109/L) | 7.2±3.2 | 7.2±3.0 | 7.2±3.5 | 0.889 |
| Hemoglobin content (g/L) | 122±29 | 122±28 | 120±29 | 0.608 |
| Thrombocyte (×109/L) | 109±57 | 118±58 | 88±49 | 0.001 |
| Ammonia(mmol/L) | 61.6±7.2 | 70.4±7.9 | 57.1±7.7 | 0.120 |
| HBV DNA (log10 IU/mL) | 3.4±2.2 | 3.5±2.1 | 3.2±2.4 | 0.505 |
| HBsAg (>250 KIU/mL) | 112 (62.2) | 83 (65.4) | 29 (54.7) | 0.180 |
| MELD | 24.2±4.8 | 23.6±4.4 | 25.7±5.3 | 0.011 |
| MELD-Na | 25.9±6.8 | 24.8±5.3 | 28.7±9.1 | 0.005 |
| AARC score | 7.8±1.3 | 7.5±1.1 | 8.3±1.5 | 0.001 |
| HE [n (%)] | 19 (10.6) | 9 (7.1) | 10 (18.9) | 0.001 |
| SBP [n (%)] | 44 (24.6) | 28 (22.0) | 16 (30.8) | 0.219 |
| Hyponatremia [n (%)] | 50 (28.2) | 32 (25.6) | 18 (34.6) | 0.225 |
| KD [n (%)] | 21 (11.7) | 9 (7.1) | 12 (22.6) | 0.003 |
| Trp (pg/mL) | 11.67±6.83 | 13.32±7.15 | 7.31±3.73 | <0.001 |
| HBV reactivation [n (%)] | 162 (90.0) | 113(89.0) | 49 (92.5) | 0.479 |
| Model | Parameters | HR | 95% CI | P |
|---|---|---|---|---|
| 1 | Tryptophan (pg/mL) | 0.853 | 0.796-0.914 | <0.001 |
| MELD | 1.054 | 1.017-1.093 | 0.004 | |
| 2 | Tryptophan (pg/mL) | 0.858 | 0.801-0.920 | <0.001 |
| MELD-Na | 1.053 | 1.023-1.084 | <0.001 | |
| 3 | Tryptophan (pg/mL) | 0.847 | 0.792-0.906 | <0.001 |
| AARC | 1.840 | 1.448-2.339 | <0.001 | |
| 4 | Tryptophan (pg/mL) | 0.861 | 0.801-0.926 | <0.001 |
| Age (year) | 1.034 | 0.999-1.070 | 0.055 | |
| Serum albumin (g/L) | 1.012 | 0.965-1.061 | 0.625 | |
| Bilirubin (mg/dL) | 1.097 | 1.054-1.142 | <0.001 | |
| Thrombocyte (×109/L) | 0.991 | 0.984-0.999 | 0.027 | |
| International normalized ratio | 1.947 | 1.269-2.987 | 0.002 | |
| Presence of HE | 1.627 | 1.049-2.523 | 0.030 | |
| Presence of KD | 3.121 | 1.635-5.955 | 0.001 |
Tab.2 Impact of serum tryptophan levels on 90-day mortality risk in the patients analyzed using different models
| Model | Parameters | HR | 95% CI | P |
|---|---|---|---|---|
| 1 | Tryptophan (pg/mL) | 0.853 | 0.796-0.914 | <0.001 |
| MELD | 1.054 | 1.017-1.093 | 0.004 | |
| 2 | Tryptophan (pg/mL) | 0.858 | 0.801-0.920 | <0.001 |
| MELD-Na | 1.053 | 1.023-1.084 | <0.001 | |
| 3 | Tryptophan (pg/mL) | 0.847 | 0.792-0.906 | <0.001 |
| AARC | 1.840 | 1.448-2.339 | <0.001 | |
| 4 | Tryptophan (pg/mL) | 0.861 | 0.801-0.926 | <0.001 |
| Age (year) | 1.034 | 0.999-1.070 | 0.055 | |
| Serum albumin (g/L) | 1.012 | 0.965-1.061 | 0.625 | |
| Bilirubin (mg/dL) | 1.097 | 1.054-1.142 | <0.001 | |
| Thrombocyte (×109/L) | 0.991 | 0.984-0.999 | 0.027 | |
| International normalized ratio | 1.947 | 1.269-2.987 | 0.002 | |
| Presence of HE | 1.627 | 1.049-2.523 | 0.030 | |
| Presence of KD | 3.121 | 1.635-5.955 | 0.001 |
| Parameters | 90-day mortality | 28-day mortality | ||||||
|---|---|---|---|---|---|---|---|---|
| AUROC | Pvs tryptophan | AUROC | Pvs tryptophan | |||||
| Tryptophan | 0.771 (0.699-0.844) | 0.570 (0.429-0.710) | ||||||
| AARC | 0.684 (0.584-0.784) | 0.001 | 0.823 (0.725-0.920) | <0.001 | ||||
| MELD | 0.656 (0.555-0.757) | <0.001 | 0.745 (0.647-0.844) | 0.005 | ||||
| MELD-Na | 0.665 (0.567-0.763) | <0.001 | 0.829 (0.745-0.913) | <0.001 | ||||
Tab.3 Predictive value of tryptophan for mortality in the patients assessed using receiver operator characteristic curves
| Parameters | 90-day mortality | 28-day mortality | ||||||
|---|---|---|---|---|---|---|---|---|
| AUROC | Pvs tryptophan | AUROC | Pvs tryptophan | |||||
| Tryptophan | 0.771 (0.699-0.844) | 0.570 (0.429-0.710) | ||||||
| AARC | 0.684 (0.584-0.784) | 0.001 | 0.823 (0.725-0.920) | <0.001 | ||||
| MELD | 0.656 (0.555-0.757) | <0.001 | 0.745 (0.647-0.844) | 0.005 | ||||
| MELD-Na | 0.665 (0.567-0.763) | <0.001 | 0.829 (0.745-0.913) | <0.001 | ||||
| Parameters | Tryptophan | P | |
|---|---|---|---|
| ≤10.14 pg/mL (n=90) | >10.14 pg/mL (n=90) | ||
| KD | 15 (16.7%) | 6 (6.7%) | 0.037 |
| Ascites | 48 (53.3%) | 45 (50.6%) | 0.711 |
| HE | 10 (11.1%) | 9 (10.0%) | 0.808 |
| Coagulation failure | 22 (25.3%) | 21 (23.6%) | 0.794 |
| Liver Failure | 78 (86.7%) | 74 (82.2%) | 0.411 |
Tab.4 Association of serum tryptophan level with organ dysfunction in the patients [n=90, n (%)]
| Parameters | Tryptophan | P | |
|---|---|---|---|
| ≤10.14 pg/mL (n=90) | >10.14 pg/mL (n=90) | ||
| KD | 15 (16.7%) | 6 (6.7%) | 0.037 |
| Ascites | 48 (53.3%) | 45 (50.6%) | 0.711 |
| HE | 10 (11.1%) | 9 (10.0%) | 0.808 |
| Coagulation failure | 22 (25.3%) | 21 (23.6%) | 0.794 |
| Liver Failure | 78 (86.7%) | 74 (82.2%) | 0.411 |
| Models | Variable | HR (95% CI) | P |
|---|---|---|---|
| Estimation of Trp-by-KD interaction | Trp | 3.416 (1.829-6.380) | <0.001 |
| KD | 1.875 (1.425-5.800) | 0.003 | |
| Interaction Trp-by-KD | 2.160 (0.251-8.566) | 0.483 | |
| Evaluation of the influence of Trp and KD* | Trp | 2.629 (1.362-5.078) | 0.004 |
| KD | 1.331 (1.174-5.943) | 0.030 | |
| Combination of independent effects: Trp/KD vs. no Trp/no KD | 7.558 (3.369-16.960) | <0.001 |
Tab.5 Impact of both serum tryptophan levels and kidney dysfunction (KD) at baseline on the 90-day mortality risk
| Models | Variable | HR (95% CI) | P |
|---|---|---|---|
| Estimation of Trp-by-KD interaction | Trp | 3.416 (1.829-6.380) | <0.001 |
| KD | 1.875 (1.425-5.800) | 0.003 | |
| Interaction Trp-by-KD | 2.160 (0.251-8.566) | 0.483 | |
| Evaluation of the influence of Trp and KD* | Trp | 2.629 (1.362-5.078) | 0.004 |
| KD | 1.331 (1.174-5.943) | 0.030 | |
| Combination of independent effects: Trp/KD vs. no Trp/no KD | 7.558 (3.369-16.960) | <0.001 |
| 1 | Wu T, Li J, Shao L, et al. Development of diagnostic criteria and a prognostic score for hepatitis B virus-related acute-on-chronic liver failure[J]. Gut, 2018, 67(12): 2181-91. |
| 2 | Li JQ, Liang X, You SL, et al. Development and validation of a new prognostic score for hepatitis B virus-related acute-on-chronic liver failure[J]. J Hepatol, 2021, 75(5): 1104-15. |
| 3 | Zhang J, Gao S, Duan ZP, et al. Overview on acute-on-chronic liver failure[J]. Front Med, 2016, 10(1): 1-17. |
| 4 | Olson JC, Kamath PS. Acute-on-chronic liver failure: concept, natural history, and prognosis[J]. Curr Opin Crit Care, 2011, 17(2): 165-9. |
| 5 | Sarin SK, Choudhury A, Sharma MK, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific association for the study of the liver (APASL): an update[J]. Hepatol Int, 2019, 13(4): 353-90. |
| 6 | Arroyo V, Moreau R, Jalan R. Acute-on-chronic liver failure[J]. N Engl J Med, 2020, 382(22): 2137-45. |
| 7 | Zhang IW, Curto A, López-Vicario C, et al. Mitochondrial dysfunction governs immunometabolism in leukocytes of patients with acute-on-chronic liver failure[J]. J Hepatol, 2022, 76(1): 93-106. |
| 8 | Zaccherini G, Aguilar F, Caraceni P, et al. Assessing the role of amino acids in systemic inflammation and organ failure in patients with ACLF[J]. J Hepatol, 2021, 74(5): 1117-31. |
| 9 | Li J, Liang X, Jiang J, et al. PBMC transcriptomics identifies immune-metabolism disorder during the development of HBV-ACLF[J]. Gut, 2022, 71(1): 163-75. |
| 10 | Peng B, Li H, Liu K, et al. Intrahepatic macrophage reprogramming associated with lipid metabolism in hepatitis B virus-related acute-on-chronic liver failure[J]. J Transl Med, 2023, 21(1): 419. |
| 11 | Moreau R, Clària J, Aguilar F, et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF[J]. J Hepatol, 2020, 72(4): 688-701. |
| 12 | McPhail MJW, Coen M. Metabolomics to discriminate between acute decompensation and acute-on-chronic liver failure in cirrhosis[J]. J Hepatol, 2020, 73(3): 730-2. |
| 13 | Clària J, Moreau R, Fenaille F, et al. Orchestration of tryptophan-kynurenine pathway, acute decompensation, and acute-on-chronic liver failure in cirrhosis[J]. Hepatology, 2019, 69(4): 1686-701. |
| 14 | Klaessens S, Stroobant V, Hoffmann D, et al. Tryptophanemia is controlled by a tryptophan-sensing mechanism ubiquitinating tryptophan 2, 3-dioxygenase[J]. Proc Natl Acad Sci USA, 2021, 118(23): e2022447118. |
| 15 | Klaessens S, Stroobant V, De Plaen E, et al. Systemic tryptophan homeostasis[J]. Front Mol Biosci, 2022, 9: 897929. |
| 16 | Hikosaka K, Yaku K, Okabe K, et al. Implications of NAD metabolism in pathophysiology and therapeutics for neuro-degenerative diseases[J]. Nutr Neurosci, 2021, 24(5): 371-83. |
| 17 | Navas LE, Carnero A. Nicotinamide adenine dinucleotide (NAD) metabolism as a relevant target in cancer[J]. Cells, 2022, 11(17): 2627. |
| 18 | Cao P, Chen Q, Shi CX, et al. Fusobacterium nucleatum promotes the development of acute liver failure by inhibiting the NAD+ salvage metabolic pathway[J]. Gut Pathog, 2022, 14(1): 29. |
| 19 | Moreau R. The pathogenesis of ACLF: the inflammatory response and immune function[J]. Semin Liver Dis, 2016, 36(2): 133-40. |
| 20 | Sarin SK, Choudhury A. Acute-on-chronic liver failure: term-inology, mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(3): 131-49. |
| 21 | Savitz J. The kynurenine pathway: a finger in every pie[J]. Mol Psychiatry, 2020, 25(1): 131-47. |
| 22 | Majewski M, Kozlowska A, Thoene M, et al. Overview of the role of vitamins and minerals on the kynurenine pathway in health and disease[J]. J Physiol Pharmacol, 2016, 67(1): 3-19. |
| 23 | Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism[J]. Cell Death Differ, 2002, 9(10): 1069-77. |
| 24 | Lerch S, Schefold JC, Spinetti T. The role of kynurenines produced by indolamine-2, 3-dioxygenase 1 in sepsis[J]. Pharmacology, 2022, 107(7/8): 359-67. |
| 25 | Platten M, Wick W, van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion[J]. Cancer Res, 2012, 72(21): 5435-40. |
| 26 | Nikolaus S, Schulte B, Al-Massad N, et al. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases[J]. Gastroenterology, 2017, 153(6): 1504-16. e2. |
| 27 | Prendergast GC, Smith C, Thomas S, et al. Indoleamine 2, 3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer[J]. Cancer Immunol Immunother, 2014, 63(7): 721-35. |
| [1] | Jinlong PANG, Xinli ZHAO, Zhen ZHANG, Haojie WANG, Xingqi ZHOU, Yumei YANG, Shanshan LI, Xiaoqiang CHANG, Feng LI, Xian LI. Overexpression of multimerin-2 promotes cutaneous melanoma cell invasion and migration and is associated with poor prognosis [J]. Journal of Southern Medical University, 2025, 45(7): 1479-1489. |
| [2] | Xuan WU, Jiamin FANG, Weiwei HAN, Lin CHEN, Jing SUN, Qili JIN. High PRELID1 expression promotes epithelial-mesenchymal transition in gastric cancer cells and is associated with poor prognosis [J]. Journal of Southern Medical University, 2025, 45(7): 1535-1542. |
| [3] | Kang WANG, Haibin LI, Jing YU, Yuan MENG, Hongli ZHANG. High expression of ELFN1 is a prognostic biomarker and promotes proliferation and metastasis of colorectal cancer cells [J]. Journal of Southern Medical University, 2025, 45(7): 1543-1553. |
| [4] | Yi ZHANG, Yu SHEN, Zhiqiang WAN, Song TAO, Yakui LIU, Shuanhu WANG. High expression of CDKN3 promotes migration and invasion of gastric cancer cells by regulating the p53/NF-κB signaling pathway and inhibiting cell apoptosis [J]. Journal of Southern Medical University, 2025, 45(4): 853-861. |
| [5] | Qingqing HUANG, Wenjing ZHANG, Xiaofeng ZHANG, Lian WANG, Xue SONG, Zhijun GENG, Lugen ZUO, Yueyue WANG, Jing LI, Jianguo HU. High MYO1B expression promotes proliferation, migration and invasion of gastric cancer cells and is associated with poor patient prognosis [J]. Journal of Southern Medical University, 2025, 45(3): 622-631. |
| [6] | Huali LI, Ting SONG, Jiawen LIU, Yongbao LI, Zhaojing JIANG, Wen DOU, Linghong ZHOU. Prognosis-guided optimization of intensity-modulated radiation therapy plans for lung cancer [J]. Journal of Southern Medical University, 2025, 45(3): 643-649. |
| [7] | Xue SONG, Yue CHEN, Min ZHANG, Nuo ZHANG, Lugen ZUO, Jing LI, Zhijun GENG, Xiaofeng ZHANG, Yueyue WANG, Lian WANG, Jianguo HU. GPSM2 is highly expressed in gastric cancer to affect patient prognosis by promoting tumor cell proliferation [J]. Journal of Southern Medical University, 2025, 45(2): 229-238. |
| [8] | Tianwei TANG, Luan LI, Yuanhan CHEN, Li ZHANG, Lixia XU, Zhilian LI, Zhonglin FENG, Huilin ZHANG, Ruifang HUA, Zhiming YE, Xinling LIANG, Ruizhao LI. High serum cystatin C is an independent risk factor for poor renal prognosis in IgA nephropathy [J]. Journal of Southern Medical University, 2025, 45(2): 379-386. |
| [9] | Xiaorui CHEN, Qingzheng WEI, Zongliang ZHANG, Jiangshui YUAN, Weiqing SONG. Overexpression of CHMP2B suppresses proliferation of renal clear cell carcinoma cells [J]. Journal of Southern Medical University, 2025, 45(1): 126-136. |
| [10] | Yaobin WANG, Liuyan CHEN, Yiling LUO, Jiqing SHEN, Sufang ZHOU. Predictive value of NUF2 for prognosis and immunotherapy responses in pan-cancer [J]. Journal of Southern Medical University, 2025, 45(1): 137-149. |
| [11] | Xiaohua CHEN, Hui LU, Ziliang WANG, Lian WANG, Yongsheng XIA, Zhijun GENG, Xiaofeng ZHANG, Xue SONG, Yueyue WANG, Jing LI, Jianguo HU, Lugen ZUO. Role of Abelson interactor 2 in progression and prognosis of gastric cancer and its regulatory mechanisms [J]. Journal of Southern Medical University, 2024, 44(9): 1653-1661. |
| [12] | Mengnan YE, Hongmei WU, Yan MEI, Qingling ZHANG. High expression of CREM is associated with poor prognosis in gastric cancer patients [J]. Journal of Southern Medical University, 2024, 44(9): 1776-1782. |
| [13] | Kai JI, Guanyu YU, Leqi ZHOU, Tianshuai ZHANG, Qianlong LING, Wenjiang MAN, Bing ZHU, Wei ZHANG. HNRNPA1 gene is highly expressed in colorectal cancer: its prognostic implications and potential as a therapeutic target [J]. Journal of Southern Medical University, 2024, 44(9): 1685-1695. |
| [14] | Pengcheng LIU, Lijuan LOU, Xia LIU, Jian WANG, Ying JIANG. A risk scoring model based on M2 macrophage-related genes for predicting prognosis of HBV-related hepatocellular carcinoma [J]. Journal of Southern Medical University, 2024, 44(5): 827-840. |
| [15] | Jingjing YANG, Lixia YIN, Ting DUAN, Minzhu NIU, Zhendong HE, Xinrui CHEN, Xiaofeng ZHANG, Jing LI, Zhijun GENG, Lugen ZUO. High expression of ATP5A1 in gastric carcinoma is correlated with a poor prognosis and enhanced glucose metabolism in tumor cells [J]. Journal of Southern Medical University, 2024, 44(5): 974-980. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||