Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (9): 2019-2025.doi: 10.12122/j.issn.1673-4254.2025.09.21
Jun JIANG1, Shuo FENG2, Yingui SUN3, Yan AN3()
Received:
2024-11-25
Online:
2025-09-20
Published:
2025-09-28
Contact:
Yan AN
E-mail:anyanfy@sdsmu.edu.cn
Jun JIANG, Shuo FENG, Yingui SUN, Yan AN. Construction of risk prediction models of hypothermia after transurethral holmium laser enucleation of the prostate based on three machine learning algorithms[J]. Journal of Southern Medical University, 2025, 45(9): 2019-2025.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.09.21
Variables | Non-Hypothermia group (n=318) | Hypothermia group (n=85) | P |
---|---|---|---|
Age (year, Mean±SD) | 70.9±7.6 | 71.8±7.1 | 0.296 |
Elderly | 0.572 | ||
Yes | 294 (92.5) | 77 (90.6) | |
No | 24 (7.5) | 8 (9.4) | |
Underweight | <0.001 | ||
Yes | 12 (3.8) | 16 (18.8) | |
No | 306 (96.2) | 69 (81.2) | |
Obesity | 0.678 | ||
Yes | 13 (4.1) | 5 (5.9) | |
No | 305 (95.9) | 80 (94.1) | |
Alcohol history | 0.624 | ||
Yes | 67 (21.1) | 20 (23.5) | |
No | 251 (78.9) | 65 (76.5) | |
Smoking history | 0.312 | ||
Yes | 80 (25.2) | 26 (30.6) | |
No | 238 (74.8) | 59 (69.4) | |
Hypertension | 0.568 | ||
Yes | 123 (38.7) | 30 (35.3) | |
No | 195 (61.3) | 55 (64.7) | |
Diabetes | 0.485 | ||
Yes | 55 (17.3) | 12 (14.1) | |
No | 263 (82.7) | 73 (85.9) | |
Cardiovascular disease | 0.822 | ||
Yes | 48 (15.1) | 12 (14.1) | |
No | 270 (84.9) | 73 (85.9) | |
Respiratory diseases | 0.94 | ||
Yes | 18 (5.7) | 4 (4.7) | |
No | 300 (94.3) | 81 (95.3) | |
ASA | 0.899 | ||
Ⅰ | 29 (9.1) | 10 (11.8) | |
Ⅱ | 177 (55.7) | 47 (55.3) | |
Ⅲ | 104 (32.7) | 26 (30.6) | |
Ⅳ | 8 (2.5) | 2 (2.4) | |
Preoperative body temperature | 36.4 (36.2, 36.5) | 36.3 (36.2, 36.5) | 0.389 |
Hypoproteinemia 0.732 | |||
Yes | 44(13.8) | 13(15.3) | |
No | 274 (86.2) | 72 (84.7) | |
Anemia | 0.848 | ||
Yes | 57 (17.9) | 16 (18.8) | |
No | 261 (82.1) | 69 (81.2) | |
Preoperative blood glucose | 5.4 (4.9, 6.3) | 5.4 (4.8, 6.3) | 0.274 |
Emergency surgery 0.982 | |||
Yes | 10 (3.1) | 2 (2.4) | |
No | 308 (96.9) | 83 (97.6) | |
Operation duration | 100.0 (75.0, 130.0) | 122.0 (95.0, 180.0) | <0.001 |
Prostate weight | 60.0 (45.0, 80.0) | 80.0 (50.0, 120.0) | <0.001 |
Total Infusion volume | 1000.0 (1000.0, 1000.0) | 1000.0 (1000.0, 1500.0) | 0.216 |
Intraoperative irrigation volume | 48 000.0 (36000.0, 60000.0) | 60 000.0 (45000.0, 90000.0) | <0.001 |
Tab.1 Baseline characteristics of the study participants
Variables | Non-Hypothermia group (n=318) | Hypothermia group (n=85) | P |
---|---|---|---|
Age (year, Mean±SD) | 70.9±7.6 | 71.8±7.1 | 0.296 |
Elderly | 0.572 | ||
Yes | 294 (92.5) | 77 (90.6) | |
No | 24 (7.5) | 8 (9.4) | |
Underweight | <0.001 | ||
Yes | 12 (3.8) | 16 (18.8) | |
No | 306 (96.2) | 69 (81.2) | |
Obesity | 0.678 | ||
Yes | 13 (4.1) | 5 (5.9) | |
No | 305 (95.9) | 80 (94.1) | |
Alcohol history | 0.624 | ||
Yes | 67 (21.1) | 20 (23.5) | |
No | 251 (78.9) | 65 (76.5) | |
Smoking history | 0.312 | ||
Yes | 80 (25.2) | 26 (30.6) | |
No | 238 (74.8) | 59 (69.4) | |
Hypertension | 0.568 | ||
Yes | 123 (38.7) | 30 (35.3) | |
No | 195 (61.3) | 55 (64.7) | |
Diabetes | 0.485 | ||
Yes | 55 (17.3) | 12 (14.1) | |
No | 263 (82.7) | 73 (85.9) | |
Cardiovascular disease | 0.822 | ||
Yes | 48 (15.1) | 12 (14.1) | |
No | 270 (84.9) | 73 (85.9) | |
Respiratory diseases | 0.94 | ||
Yes | 18 (5.7) | 4 (4.7) | |
No | 300 (94.3) | 81 (95.3) | |
ASA | 0.899 | ||
Ⅰ | 29 (9.1) | 10 (11.8) | |
Ⅱ | 177 (55.7) | 47 (55.3) | |
Ⅲ | 104 (32.7) | 26 (30.6) | |
Ⅳ | 8 (2.5) | 2 (2.4) | |
Preoperative body temperature | 36.4 (36.2, 36.5) | 36.3 (36.2, 36.5) | 0.389 |
Hypoproteinemia 0.732 | |||
Yes | 44(13.8) | 13(15.3) | |
No | 274 (86.2) | 72 (84.7) | |
Anemia | 0.848 | ||
Yes | 57 (17.9) | 16 (18.8) | |
No | 261 (82.1) | 69 (81.2) | |
Preoperative blood glucose | 5.4 (4.9, 6.3) | 5.4 (4.8, 6.3) | 0.274 |
Emergency surgery 0.982 | |||
Yes | 10 (3.1) | 2 (2.4) | |
No | 308 (96.9) | 83 (97.6) | |
Operation duration | 100.0 (75.0, 130.0) | 122.0 (95.0, 180.0) | <0.001 |
Prostate weight | 60.0 (45.0, 80.0) | 80.0 (50.0, 120.0) | <0.001 |
Total Infusion volume | 1000.0 (1000.0, 1000.0) | 1000.0 (1000.0, 1500.0) | 0.216 |
Intraoperative irrigation volume | 48 000.0 (36000.0, 60000.0) | 60 000.0 (45000.0, 90000.0) | <0.001 |
Data set | Prediction model | Precision | Accuracy | Recall | F1 Index | AUC |
---|---|---|---|---|---|---|
Training set | Logistic regression | 0.818 | 0.855 | 0.327 | 0.468 | 0.756 |
SVM | 1.000 | 0.876 | 0.364 | 0.533 | 0.816 | |
Decision tree | 0.724 | 0.852 | 0.382 | 0.500 | 0.675 | |
Validation set | Logistic regression | 0.636 | 0.775 | 0.233 | 0.341 | 0.734 |
SVM | 0.889 | 0.808 | 0.267 | 0.410 | 0.778 | |
Decision tree | 0.700 | 0.783 | 0.233 | 0.35 | 0.600 | |
External validation set | Logistic regression | 0.769 | 0.833 | 0.370 | 0.500 | 0.777 |
SVM | 0.786 | 0.842 | 0.407 | 0.537 | 0.802 | |
Decision tree | 0.606 | 0.833 | 0.741 | 0.667 | 0.845 |
Tab.2 Comparison of 3 machine learning models
Data set | Prediction model | Precision | Accuracy | Recall | F1 Index | AUC |
---|---|---|---|---|---|---|
Training set | Logistic regression | 0.818 | 0.855 | 0.327 | 0.468 | 0.756 |
SVM | 1.000 | 0.876 | 0.364 | 0.533 | 0.816 | |
Decision tree | 0.724 | 0.852 | 0.382 | 0.500 | 0.675 | |
Validation set | Logistic regression | 0.636 | 0.775 | 0.233 | 0.341 | 0.734 |
SVM | 0.889 | 0.808 | 0.267 | 0.410 | 0.778 | |
Decision tree | 0.700 | 0.783 | 0.233 | 0.35 | 0.600 | |
External validation set | Logistic regression | 0.769 | 0.833 | 0.370 | 0.500 | 0.777 |
SVM | 0.786 | 0.842 | 0.407 | 0.537 | 0.802 | |
Decision tree | 0.606 | 0.833 | 0.741 | 0.667 | 0.845 |
[1] | Srinivasan A, Wang R. An update on minimally invasive surgery for benign prostatic hyperplasia: techniques, risks, and efficacy[J]. World J Mens Health, 2020, 38(4): 402-11. doi:10.5534/wjmh.190076 |
[2] | Devlin CM, Simms MS, Maitland NJ. Benign prostatic hyperplasia-what do we know?[J]. BJU Int,2021,127(4): 389-99. doi:10.1111/bju.15229 |
[3] | Ottaiano N, Shelton, Sanekommu G, et al. Surgical complications in the management of benign prostatic hyperplasia treatment[J]. Curr Urol Rep, 2022, 23(5): 83-92. doi:10.1007/s11934-022-01091-z |
[4] | Shvero A, Calio B, Humphreys MR, et al. HoLEP: the new gold standard for surgical treatment of benign prostatic hyperplasia[J]. Can J Urol, 2021, 28(S2): 6-10. |
[5] | Sandhu JS, Bixler BR, Dahm P, et al. Management of lower urinary tract symptoms attributed to benign prostatic hyperplasia (BPH): AUA Guideline amendment 2023[J]. J Urol, 2024, 211(1): 11-9. doi:10.1097/ju.0000000000003698 |
[6] | Cho J, Lee J, Kim KM, et al. Effect of 10 minutes of prewarming and Pprewarmed intravenous fluid administration on the core temperature of patients undergoing transurethral surgery under general anesthesia[J]. Int J Med Sci, 2024, 21(1): 1-7. doi:10.7150/ijms.88943 |
[7] | Yilmaz H, Khorshid L. The effects of active warming on core body temperature and thermal comfort in patients after transurethral resection of the prostate: a randomized clinical trial[J].Clin Nurs Res, 2023, 32(2): 313-22. doi:10.1177/10547738221090593 |
[8] | Greener JG, Kandathil SM, Moffat L, et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol, 2022, 23(1): 40-55. doi:10.1038/s41580-021-00407-0 |
[9] | Sessler DI. Another concern about perioperative hypothermia[J]. J Clin Anesth, 2023, 87: 111089. doi:10.1016/j.jclinane.2023.111089 |
[10] | Tanabe FM, Zanei SV, Whitaker IY. Do frail elderly people affect the nursing workload in intensive care units?[J]. Rev Esc Enferm USP, 2022, 56: e20210599. doi:10.1590/1980-220x-reeusp-2021-0599en |
[11] | Kelly TN, Gu D, Chen J, et al. Cigarette smoking and risk of stroke in the chinese adult population[J]. Stroke, 2008, 39(6): 1688-93. doi:10.1161/strokeaha.107.505305 |
[12] | Akombi BJ, Agho KE, Hall J, et al. Stunting, wasting and underweight in Sub-Saharan Africa: a systematic review[J]. Int J Environ Res Public Health, 2017, 14(8): 863. doi:10.3390/ijerph14080863 |
[13] | Valeriani E, Cangemi R, Carnevale R, et al. Hypoalbuminemia as predictor of thrombotic events in patients with community-acquired pneumonia[J]. Int J Cardiol, 2024, 404: 131942. doi:10.1016/j.ijcard.2024.131942 |
[14] | Hornedo KD, Jacob AK, Burt JM, et al. Non-invasive hemoglobin estimation for preoperative anemia screening[J]. Transfusion, 2023, 63(2): 315-22. doi:10.1111/trf.17237 |
[15] | Piché ME, Tchernof A, DEsprés JP. Obesity phenotypes, diabetes, and cardiovascular diseases[J/OL]. Circ Res, 2020, 126(11): 1477-500. doi:10.1161/circresaha.120.316101 |
[16] | How to develop a more accurate risk prediction model when there are few events[J]. BMJ (Clinical research ed.), 2016, 353: i3235. doi:10.1136/bmj.i3235 |
[17] | Occhiuto C, SAntoro G, Tranchida PQ, et al. Pharmacological effects of the lipidosterolic extract from kigelia africana fruits in experimental benign prostatic hyperplasia induced by testosterone in sprague dawley rats[J]. J Exp Pharmacol, 2023, 15: 41-50. doi:10.2147/jep.s383699 |
[18] | SYazarina SO, Zulkifli MZ, Hamzaini AH. Predicting outcome of trial of voiding without catheter in acute urinary retention with intravesical prostatic protrusion[J]. Malays J Med Sci, 2013, 20(1): 56-9. |
[19] | Xiao H, Jiang Y, He W, et al. Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate[J]. Aging (Albany NY), 2020, 12(9): 8605-21. doi:10.18632/aging.103175 |
[20] | Ou Z, He Y, Qi L, et al. Infiltrating mast cells enhance benign prostatic hyperplasia through IL-6/STAT3/Cyclin D1 signals[J]. Oncotarget,2017, 8(35): 59156-64. doi:10.18632/oncotarget.19465 |
[21] | Zeng XT, Jin YH, Liu TZ, et al. Clinical practice guideline for transurethral plasmakinetic resection of prostate for benign prostatic hyperplasia (2021 Edition)[J]. Mil Med Res, 2022, 9(1): 14. |
[22] | Zhu C, Wang DQ, Zi H, et al. Epidemiological trends of urinary tract infections, urolithiasis and benign prostatic hyperplasia in 203 countries and territories from 1990 to 2019[J]. Mil Med Res, 2021; 8(1): 64. doi:10.1186/s40779-021-00359-8 |
[23] | Sarfraz S, Mäntynen PH, Laurila M, et al. Effect of surface tooling techniques of medical titanium implants on bacterial biofilm formation in vitro[J]. Materials (Basel), 2022, 15(9): 3228. doi:10.3390/ma15093228 |
[24] | Lyon TD, Frank I, Tollefson MK, et al. Association of intraoperative hypothermia with oncologic outcomes following radical cystectomy[J]. Urol Oncol, 2021, 39(6): 370. doi:10.1016/j.urolonc.2020.11.036 |
[25] | Morishige S, Ohyama T, Fujita N, et al. Risk factors for intraoperative hypothermia during holmium laser enucleation of the prostate[J]. Urol Int, 2023, 107(7): 672-7. doi:10.1159/000528721 |
[26] | Speakman JR. Obesity and thermoregulation[J]. Handb Clin Neurol, 2018, 156: 431-43. doi:10.1016/b978-0-444-63912-7.00026-6 |
[27] | Zell MA, Abdul-muhsin H, Navaratnam A, et al. Holmium laser enucleation of the prostate for very large benign prostatic hyperplasia (≥200 cc)[J]. World J Urol, 2021, 39(1): 129-34. doi:10.1007/s00345-020-03156-5 |
[28] | Rauch S, Miller C, Bräuer A, et al. Perioperative hypothermia-a narrative review[J]. Int J Environ Res Public Health, 2021, 18(16): 8749. doi:10.3390/ijerph18168749 |
[29] | Vogt P, Tolly R, Clifton M, et al. The development of an enhanced recovery protocol for kasai portoenterostomy[J]. Children (Basel), 2022, 9(11): 1675. doi:10.3390/children9111675 |
[30] | CAO J, Sheng X, Ding Y, et al. Effect of warm bladder irrigation fluid for benign prostatic hyperplasia patients on perioperative hypothermia, blood loss and shiver: A meta-analysis[J]. Asian J Urol, 2019, 6(2): 183-91. doi:10.1016/j.ajur.2018.07.001 |
[31] | Campbell G, Alderson P, Smith AF, et al. Warming of intravenous and irrigation fluids for preventing inadvertent perioperative hypothermia[J]. Cochrane Database Syst Rev, 2015, 2015(4): CD009891. doi:10.1002/14651858.cd009891.pub2 |
[1] | Qizhi HUANG, Daipeng XIE, Lintong YAO, Qiaxuan LI, Shaowei WU, Haiyu ZHOU. Tumor microenvironment-specific CT radiomics signature for predicting immunotherapy response in non-small cell lung cancer [J]. Journal of Southern Medical University, 2025, 45(9): 1903-1918. |
[2] | Zixian CHEN, Jiawei ZHOU, Lei TAN, Zhipeng HUANG, Kangyi XUE, Mingkun CHEN. A risk prediction model for prognosis and immunotherapy response in prostate cancer patients based on immunosuppressive neutrophil Neu_2 subsets [J]. Journal of Southern Medical University, 2025, 45(8): 1643-1653. |
[3] | Yitong LIU, Ke ZHAO, Xiaodong WANG. Lip and oral cancers in East Asia from 1990 to 2035: trends of disease burden and future projections [J]. Journal of Southern Medical University, 2025, 45(7): 1554-1562. |
[4] | Meimei CHEN, Yang WANG, Huangwei LEI, Fei ZHANG, Ruina HUANG, Zhaoyang YANG. Construction of recognition models for subthreshold depression based on multiple machine learning algorithms and vocal emotional characteristics [J]. Journal of Southern Medical University, 2025, 45(4): 711-717. |
[5] | Xuecai LÜ, Yanhong LIU, Shiyi HAN, Haoyun ZHANG, Aisheng HOU, Zhikang ZHOU, Likai SHI, Jie GAO, Jiangbei CAO, Hong ZHANG, Weidong MI. Risk factors for overall postoperative complications in elderly patients undergoing gastrointestinal surgeries: a multicenter observational study [J]. Journal of Southern Medical University, 2025, 45(4): 736-743. |
[6] | Lin SHEN, Cuihao SONG, Congmin WANG, Xi GAO, Junhong AN, Chengxin LI, Bin LIANG, Xia LI. Risk factors for malnutrition in ulcerative colitis complicated with pyoderma gangrenosum and construction of a lasso regression-based prediction model [J]. Journal of Southern Medical University, 2025, 45(3): 514-521. |
[7] | Jinguang LUO, Huaixiang TAO, Zhiyuan WEN, Long CHEN, Hao HU, Han GUAN. Tumor-associated fibroblasts promotes proliferation and migration of prostate cancer cells by suppressing FBXL3 via upregulating hsa-miR-18b-5p [J]. Journal of Southern Medical University, 2024, 44(7): 1284-1296. |
[8] | Ping YUAN, Xiuli HU, Guojia QI, Xiu DAI, Xiangyuan CHU, Weihang CHEN, Xiuquan SHI. Poor sleep quality contributes to occurrence of posttraumatic stress disorder in trauma patients [J]. Journal of Southern Medical University, 2024, 44(6): 1166-1172. |
[9] | Lili CHEN, Tianyu WU, Ming ZHANG, Zixia DING, Yan ZHANG, Yiqing YANG, Jiaqian ZHENG, Xiaonan ZHANG. Identification of potential biomarkers and immunoregulatory mechanisms of rheumatoid arthritis based on multichip co-analysis of GEO database [J]. Journal of Southern Medical University, 2024, 44(6): 1098-1108. |
[10] | Caiyu SHEN, Shuai WANG, Ruiying ZHOU, Yuhe WANG, Qin GAO, Xingzhi CHEN, Shu YANG. Prediction of risk of in-hospital death in patients with chronic heart failure complicated by lung infections using interpretable machine learning [J]. Journal of Southern Medical University, 2024, 44(6): 1141-1148. |
[11] | Zhiwei ZUO, Qingliang MENG, Jiakang CUI, Kelei GUO, Hua BIAN. An artificial neural network diagnostic model for scleroderma and immune cell infiltration analysis based on mitochondria-associated genes [J]. Journal of Southern Medical University, 2024, 44(5): 920-929. |
[12] | Yong ZHOU, Yuan WU, huiwen ZENG, Cuimei CHEN, Qun XIE, Liping HE. Analysis of Clostridioides difficile infection characteristics and risk factors in patients hospitalized for diarrhea in 3 university hospitals in a mid-south city of China [J]. Journal of Southern Medical University, 2024, 44(5): 998-1003. |
[13] | GE Yue, LI Jianwei, LIANG Hongkai, HOU Liusheng, ZUO Liuer, CHEN Zhen, LU Jianhai, ZHAO Xin, LIANG Jingyi, PENG Lan, BAO Jingna, DUAN Jiaxin, LIU Li, MAO Keqing, ZENG Zhenhua, HU Hongbin, CHEN Zhongqing. Construction and validation of an in-hospital mortality risk prediction model for patients receiving VA-ECMO: a retrospective multi-center case-control study [J]. Journal of Southern Medical University, 2024, 44(3): 491-498. |
[14] | Jiawei HU, Fang DU, Lu DING, Luxiang WANG, Weifeng ZHAO. Risk assessment of hepatocellular carcinoma in patients with hepatitis B-related cirrhosis and hypertension: a propensity score matching-based retrospective cohort study [J]. Journal of Southern Medical University, 2024, 44(11): 2243-2249. |
[15] | Xiaoyin HUANG, Fenglian CHEN, Yu ZHANG, Shujun LIANG. A predictive model for survival outcomes of glioma patients based on multi-parametric, multi-regional MRI radiomics features and clinical features [J]. Journal of Southern Medical University, 2024, 44(10): 2004-2014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||