Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (5): 920-929.doi: 10.12122/j.issn.1673-4254.2024.05.14
• Basic Research • Previous Articles Next Articles
Zhiwei ZUO1(), Qingliang MENG1, Jiakang CUI1, Kelei GUO2, Hua BIAN1,2(
)
Received:
2023-11-20
Online:
2024-05-20
Published:
2024-06-06
Contact:
Hua BIAN
E-mail:15737264121@163.com;biancrown@163.com
Supported by:
Zhiwei ZUO, Qingliang MENG, Jiakang CUI, Kelei GUO, Hua BIAN. An artificial neural network diagnostic model for scleroderma and immune cell infiltration analysis based on mitochondria-associated genes[J]. Journal of Southern Medical University, 2024, 44(5): 920-929.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.05.14
DATA | Sample size | Normal sample | SSc sample | Organization type | Data type |
---|---|---|---|---|---|
GSE95065 | 33 | 15 | 18 | Homo sapiens | Expression profiling by array |
GSE59785 | 82 | 2 | 80 | Homo sapiens | Expression profiling by array |
GSE76807 | 15 | 5 | 10 | Homo sapiens | Expression profiling by array |
Tab.1 GEO database chip data set
DATA | Sample size | Normal sample | SSc sample | Organization type | Data type |
---|---|---|---|---|---|
GSE95065 | 33 | 15 | 18 | Homo sapiens | Expression profiling by array |
GSE59785 | 82 | 2 | 80 | Homo sapiens | Expression profiling by array |
GSE76807 | 15 | 5 | 10 | Homo sapiens | Expression profiling by array |
Primer | Sequence 5'-3' |
---|---|
POLB | F: CTTCACTGGGAGTGACATCTTT R: CAGCGACTCCAGTGACC |
GSR | F: GAGCTCCAAGTGGTGACTTC R: CAGGCCCTTAGAATTTGGGT |
KRAS | F: GTGGATGAGTATGACCCTACG R GACCTGCTGTGTCGAGAATATC |
NT5DC2 | F: ACGTCGTCATCGTCCAG R: TCTCTAGGCGAGTGATACGG |
NOX4 | F: AGACTCTACACATCACATGTGG R: AAAGTTGAGGGCATTCACCA |
IGF1 | F: CCCACTGAAGCCTACAAA R: TTTCTTGTTTGTCGATAGGGA |
TGM2 | F: TGTCTGACAATGTGGAGGAG R: GCTGTAGCGAGAGGACATT |
β-actin | F: TGCTGTCCCTGTATGCCTCTG R: TGATGTCACGCACGATTTCC |
Tab.2 Primer sequence of the target genes
Primer | Sequence 5'-3' |
---|---|
POLB | F: CTTCACTGGGAGTGACATCTTT R: CAGCGACTCCAGTGACC |
GSR | F: GAGCTCCAAGTGGTGACTTC R: CAGGCCCTTAGAATTTGGGT |
KRAS | F: GTGGATGAGTATGACCCTACG R GACCTGCTGTGTCGAGAATATC |
NT5DC2 | F: ACGTCGTCATCGTCCAG R: TCTCTAGGCGAGTGATACGG |
NOX4 | F: AGACTCTACACATCACATGTGG R: AAAGTTGAGGGCATTCACCA |
IGF1 | F: CCCACTGAAGCCTACAAA R: TTTCTTGTTTGTCGATAGGGA |
TGM2 | F: TGTCTGACAATGTGGAGGAG R: GCTGTAGCGAGAGGACATT |
β-actin | F: TGCTGTCCCTGTATGCCTCTG R: TGATGTCACGCACGATTTCC |
Fig.2 Analysis of the differential expressions of the differential mitochondria-related gene in scleroderma. A: DEGs heatmap (red for up-regulated and blue for down-regulated genes). B: DEGs volcano map (red for up-regulated and blue for down-regulated genes).
Fig.3 Metascape analysis of the DEGs in scleroderma. A: DEG enrichment pathway and process network. B: Histogram of DEGs enrichment pathways and processes.
Fig.5 Selection of the key genes using 3 machine learning algorithms. A: Correlation between the number of random forest trees and the model error. B: Result of Gini coefficient method in random forest classifier. C: Characteristic genes selected by LASSO regression algorithm. D: Feature genes screened by SVM algorithm. E: Venn diagram of the intersected genes of the 3 algorithms.
Fig.7 Construction and verification of artificial neural network model. A: ANN result visualization. B: ROC curves of mitochondria-associated genes in the training dataset. C: ROC curves for mitochondria-related genes in the verification dataset.
Fig.10 Correlation of the genetic biomarkers with the infiltrating immune cells. A: GSR. B: IGF1. C: KRAS. D: NOX4. E: NT5DC2. F: POLB. G: TGM2. P<0.05 indicates a significant correlation between immune cells and genes.
1 | Orteu CH, Ong VH, Denton CP. Scleroderma mimics - Clinical features and management[J]. Best Pract Res Clin Rheumatol, 2020, 34(1): 101489. DOI: 10.1016/j.berh.2020.101489 |
2 | Li SC. Scleroderma in children and adolescents: localized Scleroderma and systemic sclerosis[J]. Pediatr Clin North Am, 2018, 65(4): 757-81. DOI: 10.1016/j.pcl.2018.04.002 |
3 | Tsou PS, Sawalha AH. Unfolding the pathogenesis of scleroderma through genomics and epigenomics[J]. J Autoimmun, 2017, 83: 73-94. DOI: 10.1016/j.jaut.2017.05.004 |
4 | Ge YZ, Zhou L, Chen ZX, et al. Identification of differentially expressed genes, signaling pathways and immune infiltration in rheumatoid arthritis by integrated bioinformatics analysis[J]. Hereditas, 2021, 158(1): 5. DOI: 10.1186/s41065-020-00169-3 |
5 | Swanson MB, Weidemann DK, Harshman LA. The impact of rural status on pediatric chronic kidney disease[J]. Pediatr Nephrol, 2024, 39(2): 435-46. DOI: 10.1007/s00467-023-06001-0 |
6 | Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism[J]. Nat Cell Biol, 2018, 20(7): 745-54. DOI: 10.1038/s41556-018-0124-1 |
7 | Uzhachenko R, Shanker A, Yarbrough WG, et al. Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity[J]. Oncotarget, 2015, 6(25): 20754-72. DOI: 10.18632/oncotarget.4537 |
8 | Henderson J, Duffy L, Stratton R, et al. Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis[J]. J Cell Mol Med, 2020, 24(23): 14026-38. DOI: 10.1111/jcmm.16013 |
9 | Zhou X, Trinh-Minh T, Tran-Manh C, et al. Impaired mitochondrial transcription factor A expression promotes mitochondrial damage to drive fibroblast activation and fibrosis in systemic sclerosis[J]. Arthritis Rheumatol, 2022, 74(5): 871-81. DOI: 10.1002/art.42033 |
10 | Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments[J]. Bioinformatics, 2012, 28(6): 882-3. DOI: 10.1093/bioinformatics/bts034 |
11 | Chen BY, Li YX, Yan YP, et al. Construction and analysis of heart failure diagnosis model based on random forest and artificial neural network[J]. Medicine, 2022, 101(41): e31097. DOI: 10.1097/md.0000000000031097 |
12 | Rongvaux A. Innate immunity and tolerance toward mitochondria[J]. Mitochondrion, 2018, 41: 14-20. DOI: 10.1016/j.mito.2017.10.007 |
13 | Kaufman BA, Van Houten B. POLB: a new role of DNA polymerase beta in mitochondrial base excision repair[J]. DNA Repair, 2017, 60: A1-A5. DOI: 10.1016/j.dnarep.2017.11.002 |
14 | Sykora P, Kanno S, Akbari M, et al. DNA polymerase beta participates in mitochondrial DNA repair[J]. Mol Cell Biol, 2017, 37(16): e00237-17. DOI: 10.1128/mcb.00237-17 |
15 | Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network[J]. Free Radic Biol Med, 2016, 95: 27-42. DOI: 10.1016/j.freeradbiomed.2016.02.028 |
16 | Xia YC, Wang GH, Jiang ML, et al. A novel biological activity of the STAT3 inhibitor stattic in inhibiting glutathione reductase and suppressing the tumorigenicity of human cervical cancer cells via a ROS-dependent pathway[J]. Onco Targets Ther, 2021, 14: 4047-60. DOI: 10.2147/ott.s313507 |
17 | Niihori T, Aoki Y, Narumi Y, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome[J]. Nat Genet, 2006, 38(3): 294-6. DOI: 10.1038/ng1749 |
18 | Schubbert S, Zenker M, Rowe SL, et al. Germline KRAS mutations cause Noonan syndrome[J]. Nat Genet, 2006, 38(3): 331-6. DOI: 10.1038/ng1748 |
19 | Groesser L, Herschberger E, Ruetten A, et al. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome[J]. Nat Genet, 2012, 44(7): 783-7. DOI: 10.1038/ng.2316 |
20 | Aslam A, Salam A, Griffiths CE, et al. Naevus sebaceus: a mosaic RASopathy[J]. Clin Exp Dermatol, 2014, 39(1): 1-6. DOI: 10.1111/ced.12209 |
21 | Li RQ, Liu RQ, Zheng SY, et al. Comprehensive analysis of prognostic value and immune infiltration of the NT5DC family in hepatocellular carcinoma[J]. J Oncol, 2022, 2022: 2607878. DOI: 10.1155/2022/2607878 |
22 | Li KS, Zhu XD, Liu HD, et al. NT5DC2 promotes tumor cell proliferation by stabilizing EGFR in hepatocellular carcinoma[J]. Cell Death Dis, 2020, 11(5): 335. DOI: 10.1038/s41419-020-2549-2 |
23 | Qiu LX, Gong GC, Wu WJ, et al. A novel prognostic signature for idiopathic pulmonary fibrosis based on five-immune-related genes[J]. Ann Transl Med, 2021, 9(20): 1570. DOI: 10.21037/atm-21-4545 |
24 | Jiménez SA, Castro SV, Piera-Velázquez S. Role of growth factors in the pathogenesis of tissue fibrosis in systemic sclerosis[J]. Curr Rheumatol Rev, 2010, 6(4): 283-94. DOI: 10.2174/157339710793205611 |
25 | Piera-Velazquez S, Makul A, Jiménez SA. Increased expression of NAPDH oxidase 4 in systemic sclerosis dermal fibroblasts: regulation by transforming growth factor Β[J]. Arthritis Rheumatol, 2015, 67(10): 2749-58. DOI: 10.1002/art.39242 |
26 | Cho SY, Oh Y, Jeong EM, et al. Amplification of transglutaminase 2 enhances tumor-promoting inflammation in gastric cancers[J]. Exp Mol Med, 2020, 52(5): 854-64. DOI: 10.1038/s12276-020-0444-7 |
27 | Wang K, Zu CH, Zhang Y, et al. Blocking TG2 attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting EMT[J]. Respir Physiol Neurobiol, 2020, 276: 103402. DOI: 10.1016/j.resp.2020.103402 |
28 | Tabata K, Mikita N, Yasutake M, et al. Up-regulation of IGF-1, RANTES and VEGF in patients with anti-centromere antibody-positive early/mild systemic sclerosis[J]. Mod Rheumatol, 2021, 31(1): 171-6. DOI: 10.1080/14397595.2020.1726599 |
29 | Hamaguchi Y, Fujimoto M, Matsushita T, et al. Elevated serum insulin-like growth factor (IGF-1) and IGF binding protein-3 levels in patients with systemic sclerosis: possible role in development of fibrosis[J]. J Rheumatol, 2008, 35(12): 2363-71. DOI: 10.3899/jrheum.080340 |
30 | Jin W, Zheng Y, Zhu P. T cell abnormalities in systemic sclerosis[J]. Autoimmun Rev, 2022, 21(11): 103185. DOI: 10.1016/j.autrev.2022.103185 |
31 | DJrMesquita, Cruvinel WM, Resende LS, et al. Follicular helper T cell in immunity and autoimmunity [J]. Braz J Med Biol Res, 2016, 49(5): e5209. DOI: 10.1590/1414-431x20165209 |
32 | Jaguin M, Fardel O, Lecureur V. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation[J]. Toxicol Appl Pharmacol, 2015, 285(3): 170-8. DOI: 10.1016/j.taap.2015.04.007 |
33 | Cardamone C, Parente R, Feo GD, et al. Mast cells as effector cells of innate immunity and regulators of adaptive immunity[J]. Immunol Lett, 2016, 178: 10-4. DOI: 10.1016/j.imlet.2016.07.003 |
34 | Lescoat A, Ballerie A, Jouneau S, et al. M1/M2 polarisation state of M-CSF blood-derived macrophages in systemic sclerosis[J]. Ann Rheum Dis, 2019, 78(11): e127. DOI: 10.1136/annrheumdis-2018-214333 |
35 | Maehara T, Kaneko N, Perugino CA, et al. Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis[J]. J Clin Invest, 2020, 130(5): 2451-64. DOI: 10.1172/jci131700 |
[1] | Wei ZHOU, Jun NIE, Jia HU, Yizhi JIANG, Dafa ZHANG. Differential expressions of endoplasmic reticulum stress-associated genes in aortic dissection and their correlation with immune cell infiltration [J]. Journal of Southern Medical University, 2024, 44(5): 859-866. |
[2] | WANG Zining, YANG Ming, LI Shuanglei, CHI Haitao, WANG Junhui, XIAO Cangsong. A transcriptomic analysis of correlation between mitochondrial function and energy metabolism remodeling in mice with myocardial fibrosis following myocardial infarction [J]. Journal of Southern Medical University, 2024, 44(4): 666-674. |
[3] | HE Huishan, GUO Erjia, MENG Wenyi, WANG Yu, WANG Wen, HE Wenle, WU Yuankui, YANG Wei. Predicting cerebral glioma enhancement pattern using a machine learning-based magnetic resonance imaging radiomics model [J]. Journal of Southern Medical University, 2024, 44(1): 194-200. |
[4] | YE Hongwei, ZHANG Yuming, YUN Qi, DU Ruoli, LI Lu, LI Yuping, GAO Qin. Resveratrol alleviates hyperglycemia-induced cardiomyocyte hypertrophy by maintaining mitochondrial homeostasis via enhancing SIRT1 expression [J]. Journal of Southern Medical University, 2024, 44(1): 45-51. |
[5] | YU Jiachi, LI Ruibing, XIA Tian, WANG Jianan, JIN Jiacheng, YUAN Manqiu, LI Mianyang. PDCD4 knockdown ameliorates lipopolysaccharide- induced endothelial cell damage by improving mitochondrial dynamics [J]. Journal of Southern Medical University, 2024, 44(1): 25-35. |
[6] | WANG Lian, XIA Yongsheng, ZHANG Zhen, LIU Xinyue, SHI Jinran, WANG Yueyue, LI Jing, ZHNAG Xiaofeng, GENG Zhijun, SONG Xue, ZUO Lugen. High expression of MRPL13 promotes cell cycle progression and proliferation of gastric cancer cells by inhibiting p53 signaling to affect long-term prognosis [J]. Journal of Southern Medical University, 2023, 43(9): 1558-1566. |
[7] | HUANG Yi, Lin Lishan, HUANG Haohua, DONG Hangming. VDAC1 participates in house dust mite- induced asthmatic airway inflammation in mice by inducing ferroptosis of airway epithelial cells [J]. Journal of Southern Medical University, 2023, 43(8): 1333-1338. |
[8] | WANG Liya, TIAN Meihui, LI Rong, WU Yue, WANG Shasha, LÜ Heng, LIU Zhongyi, YU Ying. Acetaldehyde dehydrogenase 2 ameliorates lung endothelial barrier and balances mitochondrial dynamics in mice with acute lung injury [J]. Journal of Southern Medical University, 2023, 43(8): 1388-1395. |
[9] | LUO Xiao, CHENG Yi, WU Cheng, HE Jia. An interpretable machine learning-based prediction model for risk of death for patients with ischemic stroke in intensive care unit [J]. Journal of Southern Medical University, 2023, 43(7): 1241-1247. |
[10] | SONG Chenfang, HUANG Zhenhe, CHEN Wei, WANG Fang, CAI Liangling, ZHAO Fei, ZHAO Yue. Empagliflozin alleviates cardiac microvascular ischemia/reperfusion injury by maintaining myocardial mitochondrial homeostasis [J]. Journal of Southern Medical University, 2023, 43(7): 1136-1144. |
[11] | GAO Kaiji, WANG Yihao, CAO Haikun, JIA Jianguang. Efficacy of machine learning models versus Cox regression model for predicting prognosis of esophagogastric junction adenocarcinoma [J]. Journal of Southern Medical University, 2023, 43(6): 952-963. |
[12] | XU Wenqin, YE Jingjing, WANG Fei, CHEN Tianbing. Piroctone olamine disrupts mitochondrial dynamics in glioma cells through the PI3K/AKT pathway [J]. Journal of Southern Medical University, 2023, 43(5): 764-771. |
[13] | WU Jiaming, DENG Zhongquan, ZHU Yi, DOU Guangjian, LI Jin, HUANG Liyong. Overexpression of miR-431-5p impairs mitochondrial function and induces apoptosis in gastric cancer cells via the Bax/Bcl-2/caspase3 pathway [J]. Journal of Southern Medical University, 2023, 43(4): 537-543. |
[14] | WAN Lu, QIAN Yuchi, NI Wenjing, LU Yuxin, LI Wei, PAN Yan, CHEN Weidong. Linagliptin improves diabetic kidney disease in rats by promoting mitochondrial biogenesis through the AMPK/PGC-1α/TFAM pathway [J]. Journal of Southern Medical University, 2023, 43(12): 2053-2060. |
[15] | GAO Yinan, WANG Peijun, LU Sumei, MA Wanshan. METTL3 inhibitor STM2457 improves metabolic dysfunction-associated fatty liver disease by regulating mitochondrial function in mice [J]. Journal of Southern Medical University, 2023, 43(10): 1689-1696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||