Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (5): 930-940.doi: 10.12122/j.issn.1673-4254.2024.05.15
• Clinical Research • Previous Articles Next Articles
Ruibo LI(), Ge GAO, Xi XIE(
), Haibin LUO(
)
Received:
2024-01-17
Online:
2024-05-20
Published:
2024-06-04
Contact:
Xi XIE, Haibin LUO
E-mail:21211007000005@hainanu.edu.cn;xiexi@hainanu.edu.cn;hbluo@hainanu.edu.cn
Supported by:
Ruibo LI, Ge GAO, Xi XIE, Haibin LUO. Oral submucosal fibrosis induced by active components in areca nut: a network pharmacology-based analysis and validation of the mechanism[J]. Journal of Southern Medical University, 2024, 44(5): 930-940.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.05.15
NO. | Molecule | Molecular formula | QD (ppm) | Mw | RT (min) | Matching score | Peak area | Relative content (%) |
---|---|---|---|---|---|---|---|---|
1 | Arecoline | C8H13NO2 | -5.75 | 155.09374 | 3.758 | 90.9 | 68518632210 | 45.473 |
2 | Quinic acid | C7H12O6 | -2.88 | 192.06283 | 1.539 | 92.6 | 22692914797 | 15.060 |
3 | Epicatechin | C15H14O6 | -3.42 | 290.07805 | 18.93 | 94.7 | 14748028849 | 9.788 |
4 | Trigonelline HCl | C7H7NO2 | -5.85 | 137.04688 | 1.547 | 87.3 | 12273994597 | 8.146 |
5 | Citric acid | C6H8O7 | -2.05 | 192.02661 | 1.672 | 85.3 | 11231967076 | 7.454 |
6 | Procyanidin B1 | C30H26O12 | -4.2 | 578.14 | 18.324 | 92.4 | 7264204843 | 4.821 |
7 | p-Coumaric acid | C9H8O3 | -5.71 | 164.04641 | 4.772 | 85 | 3213100960 | 2.132 |
8 | (+)-Catechin hydrate | C15H14O6 | -3.73 | 290.07796 | 19.914 | 95.2 | 857006365.1 | 0.569 |
9 | Uridine | C9H12N2O6 | -2.72 | 244.06887 | 4.959 | 93.6 | 835052793.2 | 0.566 |
10 | Isorhamnetin-3-O-nehesperidine | C28H32O16 | -3.49 | 624.16686 | 22.33 | 92.2 | 760984003.5 | 0.505 |
11 | Sucrose | C12H22O11 | -3.26 | 342.1151 | 1.575 | 93.4 | 721956624 | 0.479 |
12 | 4'-O-Glucosylvitexin | C27H30O15 | -4.08 | 594.15604 | 20.961 | 87 | 608955062.8 | 0.404 |
13 | Procyanidin B2 | C30H28O10 | -5.78 | 578.13909 | 19.473 | 90.1 | 563763212.9 | 0.374 |
14 | Rosarin | C20H28O10 | -2.75 | 428.16707 | 22.833 | 79.7 | 480609598 | 0319 |
15 | Isoguanosine | C10H13N5O5 | -2.41 | 283.09099 | 10.894 | 83.8 | 44491969.7 | 0.295 |
16 | Nicotinic acid | C6H5NO2 | -4.82 | 123.03143 | 2.533 | 78 | 432658200.9 | 0.287 |
17 | 5-Hydroxymethylfurfural | C6H6O3 | -5.63 | 126.03098 | 1.912 | 73.9 | 431787858.3 | 0.287 |
18 | 2-Pyrrolidinecarboxylic acid | C5H9NO2 | -5.99 | 115.06264 | 1.547 | 74.7 | 397002912.3 | 0.263 |
19 | L-Tyrosine | C9H11NO3 | -2.26 | 181.07348 | 4.815 | 88.5 | 373792777.1 | 0.248 |
20 | Benzoic acid | C7H6O2 | -6.16 | 122.03603 | 18.932 | 88.4 | 277514777.6 | 0.184 |
Tab.1 Identification of the top 20 components of areca extract from Hainan areca nut
NO. | Molecule | Molecular formula | QD (ppm) | Mw | RT (min) | Matching score | Peak area | Relative content (%) |
---|---|---|---|---|---|---|---|---|
1 | Arecoline | C8H13NO2 | -5.75 | 155.09374 | 3.758 | 90.9 | 68518632210 | 45.473 |
2 | Quinic acid | C7H12O6 | -2.88 | 192.06283 | 1.539 | 92.6 | 22692914797 | 15.060 |
3 | Epicatechin | C15H14O6 | -3.42 | 290.07805 | 18.93 | 94.7 | 14748028849 | 9.788 |
4 | Trigonelline HCl | C7H7NO2 | -5.85 | 137.04688 | 1.547 | 87.3 | 12273994597 | 8.146 |
5 | Citric acid | C6H8O7 | -2.05 | 192.02661 | 1.672 | 85.3 | 11231967076 | 7.454 |
6 | Procyanidin B1 | C30H26O12 | -4.2 | 578.14 | 18.324 | 92.4 | 7264204843 | 4.821 |
7 | p-Coumaric acid | C9H8O3 | -5.71 | 164.04641 | 4.772 | 85 | 3213100960 | 2.132 |
8 | (+)-Catechin hydrate | C15H14O6 | -3.73 | 290.07796 | 19.914 | 95.2 | 857006365.1 | 0.569 |
9 | Uridine | C9H12N2O6 | -2.72 | 244.06887 | 4.959 | 93.6 | 835052793.2 | 0.566 |
10 | Isorhamnetin-3-O-nehesperidine | C28H32O16 | -3.49 | 624.16686 | 22.33 | 92.2 | 760984003.5 | 0.505 |
11 | Sucrose | C12H22O11 | -3.26 | 342.1151 | 1.575 | 93.4 | 721956624 | 0.479 |
12 | 4'-O-Glucosylvitexin | C27H30O15 | -4.08 | 594.15604 | 20.961 | 87 | 608955062.8 | 0.404 |
13 | Procyanidin B2 | C30H28O10 | -5.78 | 578.13909 | 19.473 | 90.1 | 563763212.9 | 0.374 |
14 | Rosarin | C20H28O10 | -2.75 | 428.16707 | 22.833 | 79.7 | 480609598 | 0319 |
15 | Isoguanosine | C10H13N5O5 | -2.41 | 283.09099 | 10.894 | 83.8 | 44491969.7 | 0.295 |
16 | Nicotinic acid | C6H5NO2 | -4.82 | 123.03143 | 2.533 | 78 | 432658200.9 | 0.287 |
17 | 5-Hydroxymethylfurfural | C6H6O3 | -5.63 | 126.03098 | 1.912 | 73.9 | 431787858.3 | 0.287 |
18 | 2-Pyrrolidinecarboxylic acid | C5H9NO2 | -5.99 | 115.06264 | 1.547 | 74.7 | 397002912.3 | 0.263 |
19 | L-Tyrosine | C9H11NO3 | -2.26 | 181.07348 | 4.815 | 88.5 | 373792777.1 | 0.248 |
20 | Benzoic acid | C7H6O2 | -6.16 | 122.03603 | 18.932 | 88.4 | 277514777.6 | 0.184 |
Fig.2 Network pharmacological analysis of the components of areca nut. A: Network pharmacology technology flow chart. B: Areca nut active ingredient-disease target for oral submucous fibrosis (OSF). C: Protein-protein interaction. D: Core target acquisition map. E: Intersection of the core target genes of the active ingredients of areca nut and OSF. F: Areca nut-component-target-OSF target interaction map. G: Effect of areca nut active ingredients on GO enrichment of OSF targets. H: KEGG pathway enrichment analysis of the effects of areca nut active ingredients on OSF targets. I: KEGG pathway secondary classification analysis. J: Molecular docking binding energy heat map.
NO. | Molecule ID | Molecule name | OB/% | PubChem ID |
---|---|---|---|---|
A1 | MOL005835 | Guvacine | 98.35 | 40468028 |
A2 | MOL005833 | Arecaine | 84.34 | 6971195 |
A3 | MOL005838 | isoguvacine | 72.17 | 7059534 |
A4 | MOL010481 | WLN: GR DSWR DG | 70.57 | 6625 |
A5 | MOL000004 | Procyanidin B1 | 67.87 | 11250133 |
A6 | MOL000676 | DBP | 64.54 | 3026 |
A7 | MOL004544 | Quinic acid | 63.53 | 37439 |
A8 | MOL001456 | citric acid | 56.22 | 19782904 |
A9 | MOL004365 | Isomenthol | 55.30 | 19244 |
A10 | MOL000492 | Catechin | 54.83 | 9064 |
A11 | MOL002095 | DEP | 52.19 | 6781 |
A12 | MOL000555 | Homoarecoline | 52.03 | 34167 |
A13 | MOL010483 | dehydeoacetic acid | 52.02 | 1712264 |
A14 | MOL000635 | vanilline | 52.00 | 1183 |
A15 | MOL000073 | ent-Epicatechin | 48.96 | 1822932 |
A16 | MOL010485 | EPA | 45.66 | 446284 |
A17 | MOL010482 | WLN: 6OVR BVO6 | 43.74 | 6786 |
A18 | MOL001749 | ZINC03860434 | 43.59 | 7057921 |
A19 | MOL000131 | EIC | 41.90 | 5280450 |
A20 | MOL004454 | ODD | 41.70 | 5282800 |
A21 | MOL000041 | PHA | 41.62 | 6925665 |
A22 | MOL010492 | Arecoline | 40.70 | 2230 |
A23 | MOL002032 | DNOP | 40.59 | 8346 |
A24 | MOL002850 | butylated hydroxytoluene | 40.02 | 31404 |
A25 | MOL000198 | (R)-linalool | 39.80 | 443158 |
A26 | MOL000234 | L-Limonen | 38.09 | 439250 |
A27 | MOL001739 | zoomaric acid | 35.78 | 445638 |
A28 | MOL010488 | 10Z-heptadecenoic acid | 34.42 | 5312435 |
A29 | MOL002372 | (6Z,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene | 33.55 | 11975273 |
A30 | MOL000675 | oleic acid | 33.13 | 445639 |
A31 | MOL010487 | Guvacoline | 32.67 | 160492 |
A32 | MOL000301 | 2-lauroleic acid | 31.42 | 5282729 |
A33 | MOL010489 | Resivit | 30.84 | 71629 |
A34 | MOL003505 | Panosorb | 30.82 | 643460 |
Tab.2 Screening of active ingredients in areca nut
NO. | Molecule ID | Molecule name | OB/% | PubChem ID |
---|---|---|---|---|
A1 | MOL005835 | Guvacine | 98.35 | 40468028 |
A2 | MOL005833 | Arecaine | 84.34 | 6971195 |
A3 | MOL005838 | isoguvacine | 72.17 | 7059534 |
A4 | MOL010481 | WLN: GR DSWR DG | 70.57 | 6625 |
A5 | MOL000004 | Procyanidin B1 | 67.87 | 11250133 |
A6 | MOL000676 | DBP | 64.54 | 3026 |
A7 | MOL004544 | Quinic acid | 63.53 | 37439 |
A8 | MOL001456 | citric acid | 56.22 | 19782904 |
A9 | MOL004365 | Isomenthol | 55.30 | 19244 |
A10 | MOL000492 | Catechin | 54.83 | 9064 |
A11 | MOL002095 | DEP | 52.19 | 6781 |
A12 | MOL000555 | Homoarecoline | 52.03 | 34167 |
A13 | MOL010483 | dehydeoacetic acid | 52.02 | 1712264 |
A14 | MOL000635 | vanilline | 52.00 | 1183 |
A15 | MOL000073 | ent-Epicatechin | 48.96 | 1822932 |
A16 | MOL010485 | EPA | 45.66 | 446284 |
A17 | MOL010482 | WLN: 6OVR BVO6 | 43.74 | 6786 |
A18 | MOL001749 | ZINC03860434 | 43.59 | 7057921 |
A19 | MOL000131 | EIC | 41.90 | 5280450 |
A20 | MOL004454 | ODD | 41.70 | 5282800 |
A21 | MOL000041 | PHA | 41.62 | 6925665 |
A22 | MOL010492 | Arecoline | 40.70 | 2230 |
A23 | MOL002032 | DNOP | 40.59 | 8346 |
A24 | MOL002850 | butylated hydroxytoluene | 40.02 | 31404 |
A25 | MOL000198 | (R)-linalool | 39.80 | 443158 |
A26 | MOL000234 | L-Limonen | 38.09 | 439250 |
A27 | MOL001739 | zoomaric acid | 35.78 | 445638 |
A28 | MOL010488 | 10Z-heptadecenoic acid | 34.42 | 5312435 |
A29 | MOL002372 | (6Z,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene | 33.55 | 11975273 |
A30 | MOL000675 | oleic acid | 33.13 | 445639 |
A31 | MOL010487 | Guvacoline | 32.67 | 160492 |
A32 | MOL000301 | 2-lauroleic acid | 31.42 | 5282729 |
A33 | MOL010489 | Resivit | 30.84 | 71629 |
A34 | MOL003505 | Panosorb | 30.82 | 643460 |
Fig.3 Molecular docking of areca nut components. A: Chemical structures of 10 areca nut active ingredients. B: Visualization of molecular docking of some active ingredients of areca nut with the core targets.
Main active ingredients | Binding energy with target (kcal/mol) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Molecule name | PubChem ID | AKT1 (4GV1) | INS (1TYL) | EGF (1NQL) | EGFR (3W2S) | VEGFA (4KZN) | TP53 (3Q01) | MAPK3 (4QTB) | MYC (5I4Z) |
Guvacine | 40468028 | -4.35 | -4.16 | 0.00 | -4.41 | -3.82 | 0.00 | 0.00 | -4.17 |
Arecaine | 6971195 | -4.25 | -4.43 | 0.00 | -4.27 | -3.74 | 0.00 | 0.00 | -4.46 |
isoguvacine | 7059534 | -4.38 | -4.06 | 0.00 | -4.01 | -3.78 | 0.00 | 0.00 | -3.85 |
WLN: GR DSWR DG | 6625 | -5.66 | -4.89 | -5.32 | -4.73 | -4.38 | -4.76 | -5.71 | -4.54 |
Procyanidin B1 | 11250133 | -6.86 | -6.42 | -6.70 | -6.68 | -5.45 | -6.02 | -6.60 | -5.94 |
Quinic acid | 37439 | -4.78 | -4.45 | 0.00 | -5.28 | -4.11 | 0.00 | 0.00 | -4.14 |
ent-Epicatechin | 1822932 | -6.54 | -5.61 | -5.72 | -6.15 | -4.91 | -5.51 | -6.54 | -5.16 |
Arecoline | 2230 | -5.28 | -4.69 | 0.00 | 0.00 | -4.47 | -4.03 | 0.00 | -4.48 |
Tab.3 Molecular docking scoring list
Main active ingredients | Binding energy with target (kcal/mol) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Molecule name | PubChem ID | AKT1 (4GV1) | INS (1TYL) | EGF (1NQL) | EGFR (3W2S) | VEGFA (4KZN) | TP53 (3Q01) | MAPK3 (4QTB) | MYC (5I4Z) |
Guvacine | 40468028 | -4.35 | -4.16 | 0.00 | -4.41 | -3.82 | 0.00 | 0.00 | -4.17 |
Arecaine | 6971195 | -4.25 | -4.43 | 0.00 | -4.27 | -3.74 | 0.00 | 0.00 | -4.46 |
isoguvacine | 7059534 | -4.38 | -4.06 | 0.00 | -4.01 | -3.78 | 0.00 | 0.00 | -3.85 |
WLN: GR DSWR DG | 6625 | -5.66 | -4.89 | -5.32 | -4.73 | -4.38 | -4.76 | -5.71 | -4.54 |
Procyanidin B1 | 11250133 | -6.86 | -6.42 | -6.70 | -6.68 | -5.45 | -6.02 | -6.60 | -5.94 |
Quinic acid | 37439 | -4.78 | -4.45 | 0.00 | -5.28 | -4.11 | 0.00 | 0.00 | -4.14 |
ent-Epicatechin | 1822932 | -6.54 | -5.61 | -5.72 | -6.15 | -4.91 | -5.51 | -6.54 | -5.16 |
Arecoline | 2230 | -5.28 | -4.69 | 0.00 | 0.00 | -4.47 | -4.03 | 0.00 | -4.48 |
Fig.4 Clinical validation. A: HE staining, Masson, SR staining (Original magnification: ×100 or ×200). B: Fibronectin immunohistochemistry and H-score semi-quantitative analysis (×100 or ×200; n≥5). C: SR staining and differentiation of COL I and COL III under polarized light (×100). Orange and red fluorescence indicate Col I. Green fluorescence indicates COL III. D: Immunohistochemical staining of PI3K-Akt pathway proteins (×100 or ×200; n≥5). E: Immunohistochemistry and H-score semi-quantitative analysis of PI3K-Akt pathway proteins (n≥5). F: Immunohistochemical staining of MAPK pathway protein (×100, ×200 or ×400; n≥5). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
1 | Mehrtash H, Duncan K, Parascandola M, et al. Defining a global research and policy agenda for betel quid and areca nut[J]. Lancet Oncol, 2017, 18(12): e767-75. DOI: 10.1016/s1470-2045(17)30460-6 |
2 | 周明玺, 郭亦晨, 李 珂, 等. 槟榔活性成分及药理毒理作用研究进展[J]. 中成药, 2022, 44(3): 878-83. |
3 | 周思安, 刘斯薇, 金力行, 等. 槟榔碱对生殖与泌尿系统的影响[J]. 国际生殖健康/计划生育杂志, 2019, 38(5): 413-7. |
4 | Kondaiah P, Pant I, Khan I. Molecular pathways regulated by areca nut in the etiopathogenesis of oral submucous fibrosis[J]. Periodontol 2000, 2019, 80(1): 213-24. DOI: 10.1111/prd.12266 |
5 | 中华口腔医学会, 口腔黏膜下纤维性变诊断与临床管理指南:T/ [S]. 2022. |
6 | Arakeri G, Rai KK, Hunasgi S, et al. Oral submucous fibrosis: an update on current theories of pathogenesis[J]. J Oral Pathology Medicine, 2017, 46(6): 406-12. DOI: 10.1111/jop.12581 |
7 | Gupta S, Jawanda MK. Oral submucous fibrosis: an overview of a challenging entity[J]. Indian J Dermatol Venereol Leprol, 2021, 87: 768-77. DOI: 10.25259/ijdvl_371_20 |
8 | Hsieh PL, Yu CC. Oral fibrosis and oral cancer: from molecular targets to therapeutics[J]. Int J Mol Sci, 2022, 23(11): 6110. DOI: 10.3390/ijms23116110 |
9 | Shih YH, Wang TH, Shieh TM, et al. Oral submucous fibrosis: a review on etiopathogenesis, diagnosis, and therapy[J]. Int J Mol Sci, 2019, 20(12): 2940. DOI: 10.3390/ijms20122940 |
10 | Warnakulasuriya S, Tilakaratne WM, Kerr A. Oral submucous fibrosis[M]//Contemporary Oral Oncology. Cham: Springer International Publishing, 2016: 329-53. DOI: 10.1007/978-3-319-14911-0_8 |
11 | Wang LP, Tang ZG. Immunopathogenesis of oral submucous fibrosis by chewing the areca nut[J]. J Leukoc Biol, 2022, 111(2): 469-76. DOI: 10.1002/jlb.3mr0521-763rr |
12 | Zhou BL, Zhu W, Ren CP. First steps to regulate advertising of areca nut in China[J]. Lancet Oncol, 2019, 20(5): 615-6. DOI: 10.1016/s1470-2045(19)30231-1 |
13 | Zhou LH, Tan J, Dai YZ, et al. Jiawei Danxuan Koukang alleviates arecoline induced oral mucosal lesions: network pharmacology and the combined ultra-high performance liquid chromatography (UPLC) and mass spectrometry (MS)[J]. Drug Des Devel Ther, 2023, 17: 3085-101. DOI: 10.2147/dddt.s413897 |
14 | Luo WF, Deng J, He JC, et al. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes[J]. J Cell Mol Med, 2023, 27(14): 1959-74. DOI: 10.1111/jcmm.17787 |
15 | 欧海亚,叶小鹏,李舒 等.基于网络药理学及数据挖掘探讨中药调节铁死亡的用药规律研究[J]. 中国现代应用药,2019,36(18):2317-24 |
16 | Hou FF, Yu ZY, Cheng Y, et al. Deciphering the pharmacological mechanisms of Scutellaria baicalensis Georgi on oral leukoplakia by combining network pharmacology, molecular docking and experimental evaluations[J]. Phytomedicine, 2022, 103: 154195. DOI: 10.1016/j.phymed.2022.154195 |
17 | Zhao JL, Lin FZ, Liang GH, et al. Exploration of the molecular mechanism of polygonati rhizoma in the treatment of osteoporosis based on network pharmacology and molecular docking[J]. Front Endocrinol, 2022, 12: 815891. DOI: 10.3389/fendo.2021.815891 |
18 | Gao P, Chang K, Yuan S, et al. Exploring the mechanism of hepatotoxicity induced by Dictamnus dasycarpus based on network pharmacology, molecular docking and experimental pharmacology[J]. Molecules, 2023, 28(13): 5045. DOI: 10.3390/molecules28135045 |
19 | Luo WF, Deng J, He JC, et al. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes[J]. J Cell Mol Med, 2023, 27(14): 1959-74. DOI: 10.1111/jcmm.17787 |
20 | He JH, Han DB, Jia CL, et al. Integrating network pharmacology, molecular docking and pharmacological evaluation for exploring the Polyrhachis vicina Rogers in ameliorating depression[J]. Drug Des Devel Ther, 2023, 17: 717-35. DOI: 10.2147/dddt.s399183 |
21 | Zhan QX, Zhao JN, Liu L, et al. Integrated network pharmacology and molecular docking analyses of the mechanisms underlying the antihypertensive effects of lotusine[J]. Eur J Pharmacol, 2023, 945: 175622. DOI: 10.1016/j.ejphar.2023.175622 |
22 | Torres PHM, Sodero ACR, Jofily P, et al. Key topics in molecular docking for drug design[J]. Int J Mol Sci, 2019, 20(18): 4574. DOI: 10.3390/ijms20184574 |
23 | Liao F, Yousif M, Huang RY, et al. Network pharmacology- and molecular docking-based analyses of the antihypertensive mechanism of Ilex kudingcha [J]. Front Endocrinol, 2023, 14: 1216086. DOI: 10.3389/fendo.2023.1216086 |
24 | Di-Luoffo M, Ben-Meriem Z, Lefebvre P, et al. PI3K functions as a hub in mechanotransduction[J]. Trends Biochem Sci, 2021, 46(11): 878-88. DOI: 10.1016/j.tibs.2021.05.005 |
25 | Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-35. DOI: 10.1016/j.cell.2017.07.029 |
26 | Wang JC, Hu KL, Cai XY, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B, 2022, 12(1): 18-32. DOI: 10.1016/j.apsb.2021.07.023 |
27 | de Oliveira RP, de Andrade JS, Spina M, et al. Clozapine prevented social interaction deficits and reduced c-Fos immunoreactivity expression in several brain areas of rats exposed to acute restraint stress[J]. PLoS One, 2022, 17(3): e0262728. DOI: 10.1371/journal.pone.0262728 |
28 | Yang Y, Gong WY, Jin CX, et al. Naringin ameliorates experimental diabetic renal fibrosis by inhibiting the ERK1/2 and JNK MAPK signaling pathways[J]. J Funct Foods, 2018, 50: 53-62. DOI: 10.1016/j.jff.2018.09.020 |
29 | Pant I, Rao SG, Kondaiah P. Role of areca nut induced JNK/ATF2/Jun axis in the activation of TGF-β pathway in precancerous Oral Submucous Fibrosis[J]. Sci Rep, 2016, 6: 34314. DOI: 10.1038/srep34314 |
30 | Carleton M, Zhou M, De Henau O, et al. Serum interleukin 8 (IL-8) may serve as a biomarker of response to immuno-oncology (I-O) therapy[J]. J Clin Oncol, 2018, 36(): 3025. DOI: 10.1200/jco.2018.36.15_suppl.3025 |
31 | Bucur M, Dinca O, Vladan C, et al. Variation in expression of inflammation-related signaling molecules with profibrotic and antifibrotic effects in cutaneous and oral mucosa scars[J]. J Immunol Res, 2018, 2018: 5196023. DOI: 10.1155/2018/5196023 |
[1] | LI Yunfei, YANG Jingyi, ZHANG Ying, ZHANG Caixia, WEI Yuxiang, WANG Yiying, WU Ning, SUN Jianfei, WU Zunqiu. The Miao medicine Sidaxue alleviates rheumatoid arthritis in rats possibly by downregulating matrix metalloproteinases [J]. Journal of Southern Medical University, 2024, 44(4): 739-747. |
[2] | CHEN Junjie, HUANG Chuanbing, LI Ming. Jianpi Zishen granule inhibits podocyte autophagy in systemic lupus erythematosus: a network pharmacology and clinical study [J]. Journal of Southern Medical University, 2024, 44(3): 465-473. |
[3] | CUI Yixin, WANG Decai, XIE Dongqing, WANG Haiming, XU Ruixin, TANG Xiaoran, ZHANG Yin. Efficacy of navel application of Jianpiwenyang Gel for chronic diarrhea of spleen and stomach weakness type: a randomized controlled trial and analysis of the mechanism [J]. Journal of Southern Medical University, 2024, 44(2): 217-225. |
[4] | ZHANG Qian, ZHANG Meikui, LIU Yinglu, WANG Yan, LV Feifei, WANG Yuguo. Exploring the therapeutic mechanism of Liuwei Suanzao decoction for perimenopausal insomnia based on network pharmacology and animal experiments [J]. Journal of Southern Medical University, 2023, 43(9): 1536-1547. |
[5] | ZHANG Xuefang, CHEN Yanhua, LI Zongheng, SHANG Jing, YUAN Zeting, DENG Wanli, LUO Ying, HAN Na, YIN Peihao, YIN Jun. Analysis of therapeutic mechanism of Liushen Wan against colitis-associated colorectal cancer based on network pharmacology and validation in mice [J]. Journal of Southern Medical University, 2023, 43(7): 1051-1062. |
[6] | LIU Fang, ZHANG Yuanfang, LIU Peng, LIU Jiamin, LIU Siyu, WANG Junjie. UPLC-Q-TOF-MS/MS combined with network pharmacology for exploring anti-inflammatory mechanism of Eurycoma longifolia [J]. Journal of Southern Medical University, 2023, 43(6): 879-888. |
[7] | LUO Guanfeng, LIU Huaxi, XIE Bei, DENG Yijian, XIE Penghui, ZHAO Xiaoshan, SUN Xiaomin. Therapeutic mechanism of Shenbing Decoction III for renal fibrosis in chronic kidney disease: a study with network pharmacology, molecular docking and validation in rats [J]. Journal of Southern Medical University, 2023, 43(6): 924-934. |
[8] | SUN Yang, XU Yibo, XIAO Linyu, ZHU Guoqing, LI Jing, SONG Xue, XU Lei, HU Jianguo. Acetylcorynoline inhibits microglia activation by regulating EGFR/MAPK signaling to promote functional recovery of injured mouse spinal cord [J]. Journal of Southern Medical University, 2023, 43(6): 915-923. |
[9] | ZHAO Yuxi, ZHAO Xu, ZHU Qingnan, ZHU Bingrui, ZHANG Zhenbin, CHEN Jing. Therapeutic mechanism of Guizhi Gancao Decoction for heart failure: a network pharmacology-based analysis [J]. Journal of Southern Medical University, 2023, 43(5): 772-782. |
[10] | ZHANG Yu, TU Xing, ZHANG Yan, WEN Dejian, ZHAO Fangyu, YUAN Lin, LI Wenhui. Anti-inflammatory mechanism of Balanophora involucrata: a network pharmacology and molecular docking-based analysis and verification in lipopolysaccharide-induced RAW264.7 cells [J]. Journal of Southern Medical University, 2023, 43(3): 383-392. |
[11] | HUANG Yongqi, YU Wei, YOU Yuehua. Arecoline induces activation of human oral fibroblasts by promoting macrophage secretion of exosomes containing miR-155-5p [J]. Journal of Southern Medical University, 2023, 43(1): 60-67. |
[12] | CAO Chunhao, ZENG Li, RONG Xiaofeng. Therapeutic mechanism of emodin for treatment of rheumatoid arthritis: a network pharmacology-based analysis [J]. Journal of Southern Medical University, 2022, 42(6): 913-921. |
[13] | XU Meng, ZHANG Peng, ZHANG Guoliang. Exploration of the therapeutic mechanism of Yiqi Jiedu recipe for treatment of primary liver cancer based on network pharmacology and molecular docking [J]. Journal of Southern Medical University, 2022, 42(6): 805-814. |
[14] | CUI Yixin, MI Jiwei, FENG Yu, LI Lingsheng, WANG Yujia, HU Jian, WANG Haiming. Huangqi Sijunzi decoction for treating cancer-related fatigue in breast cancer patients: a randomized trial and network pharmacology study [J]. Journal of Southern Medical University, 2022, 42(5): 649-657. |
[15] | XING Lei, XING wenwen, GUO Hongmin. Exploring the therapeutic mechanism of Longqi Fang for diabetic kidney disease based on network pharmacology and verification in rats [J]. Journal of Southern Medical University, 2022, 42(2): 171-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||