Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (5): 920-929.doi: 10.12122/j.issn.1673-4254.2024.05.14
• Basic Research • Previous Articles Next Articles
Zhiwei ZUO1(), Qingliang MENG1, Jiakang CUI1, Kelei GUO2, Hua BIAN1,2(
)
Received:
2023-11-20
Online:
2024-05-20
Published:
2024-06-06
Contact:
Hua BIAN
E-mail:15737264121@163.com;biancrown@163.com
Supported by:
Zhiwei ZUO, Qingliang MENG, Jiakang CUI, Kelei GUO, Hua BIAN. An artificial neural network diagnostic model for scleroderma and immune cell infiltration analysis based on mitochondria-associated genes[J]. Journal of Southern Medical University, 2024, 44(5): 920-929.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.05.14
DATA | Sample size | Normal sample | SSc sample | Organization type | Data type |
---|---|---|---|---|---|
GSE95065 | 33 | 15 | 18 | Homo sapiens | Expression profiling by array |
GSE59785 | 82 | 2 | 80 | Homo sapiens | Expression profiling by array |
GSE76807 | 15 | 5 | 10 | Homo sapiens | Expression profiling by array |
Tab.1 GEO database chip data set
DATA | Sample size | Normal sample | SSc sample | Organization type | Data type |
---|---|---|---|---|---|
GSE95065 | 33 | 15 | 18 | Homo sapiens | Expression profiling by array |
GSE59785 | 82 | 2 | 80 | Homo sapiens | Expression profiling by array |
GSE76807 | 15 | 5 | 10 | Homo sapiens | Expression profiling by array |
Primer | Sequence 5'-3' |
---|---|
POLB | F: CTTCACTGGGAGTGACATCTTT R: CAGCGACTCCAGTGACC |
GSR | F: GAGCTCCAAGTGGTGACTTC R: CAGGCCCTTAGAATTTGGGT |
KRAS | F: GTGGATGAGTATGACCCTACG R GACCTGCTGTGTCGAGAATATC |
NT5DC2 | F: ACGTCGTCATCGTCCAG R: TCTCTAGGCGAGTGATACGG |
NOX4 | F: AGACTCTACACATCACATGTGG R: AAAGTTGAGGGCATTCACCA |
IGF1 | F: CCCACTGAAGCCTACAAA R: TTTCTTGTTTGTCGATAGGGA |
TGM2 | F: TGTCTGACAATGTGGAGGAG R: GCTGTAGCGAGAGGACATT |
β-actin | F: TGCTGTCCCTGTATGCCTCTG R: TGATGTCACGCACGATTTCC |
Tab.2 Primer sequence of the target genes
Primer | Sequence 5'-3' |
---|---|
POLB | F: CTTCACTGGGAGTGACATCTTT R: CAGCGACTCCAGTGACC |
GSR | F: GAGCTCCAAGTGGTGACTTC R: CAGGCCCTTAGAATTTGGGT |
KRAS | F: GTGGATGAGTATGACCCTACG R GACCTGCTGTGTCGAGAATATC |
NT5DC2 | F: ACGTCGTCATCGTCCAG R: TCTCTAGGCGAGTGATACGG |
NOX4 | F: AGACTCTACACATCACATGTGG R: AAAGTTGAGGGCATTCACCA |
IGF1 | F: CCCACTGAAGCCTACAAA R: TTTCTTGTTTGTCGATAGGGA |
TGM2 | F: TGTCTGACAATGTGGAGGAG R: GCTGTAGCGAGAGGACATT |
β-actin | F: TGCTGTCCCTGTATGCCTCTG R: TGATGTCACGCACGATTTCC |
Fig.2 Analysis of the differential expressions of the differential mitochondria-related gene in scleroderma. A: DEGs heatmap (red for up-regulated and blue for down-regulated genes). B: DEGs volcano map (red for up-regulated and blue for down-regulated genes).
Fig.3 Metascape analysis of the DEGs in scleroderma. A: DEG enrichment pathway and process network. B: Histogram of DEGs enrichment pathways and processes.
Fig.5 Selection of the key genes using 3 machine learning algorithms. A: Correlation between the number of random forest trees and the model error. B: Result of Gini coefficient method in random forest classifier. C: Characteristic genes selected by LASSO regression algorithm. D: Feature genes screened by SVM algorithm. E: Venn diagram of the intersected genes of the 3 algorithms.
Fig.7 Construction and verification of artificial neural network model. A: ANN result visualization. B: ROC curves of mitochondria-associated genes in the training dataset. C: ROC curves for mitochondria-related genes in the verification dataset.
Fig.10 Correlation of the genetic biomarkers with the infiltrating immune cells. A: GSR. B: IGF1. C: KRAS. D: NOX4. E: NT5DC2. F: POLB. G: TGM2. P<0.05 indicates a significant correlation between immune cells and genes.
1 | Orteu CH, Ong VH, Denton CP. Scleroderma mimics - Clinical features and management[J]. Best Pract Res Clin Rheumatol, 2020, 34(1): 101489. DOI: 10.1016/j.berh.2020.101489 |
2 | Li SC. Scleroderma in children and adolescents: localized Scleroderma and systemic sclerosis[J]. Pediatr Clin North Am, 2018, 65(4): 757-81. DOI: 10.1016/j.pcl.2018.04.002 |
3 | Tsou PS, Sawalha AH. Unfolding the pathogenesis of scleroderma through genomics and epigenomics[J]. J Autoimmun, 2017, 83: 73-94. DOI: 10.1016/j.jaut.2017.05.004 |
4 | Ge YZ, Zhou L, Chen ZX, et al. Identification of differentially expressed genes, signaling pathways and immune infiltration in rheumatoid arthritis by integrated bioinformatics analysis[J]. Hereditas, 2021, 158(1): 5. DOI: 10.1186/s41065-020-00169-3 |
5 | Swanson MB, Weidemann DK, Harshman LA. The impact of rural status on pediatric chronic kidney disease[J]. Pediatr Nephrol, 2024, 39(2): 435-46. DOI: 10.1007/s00467-023-06001-0 |
6 | Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism[J]. Nat Cell Biol, 2018, 20(7): 745-54. DOI: 10.1038/s41556-018-0124-1 |
7 | Uzhachenko R, Shanker A, Yarbrough WG, et al. Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity[J]. Oncotarget, 2015, 6(25): 20754-72. DOI: 10.18632/oncotarget.4537 |
8 | Henderson J, Duffy L, Stratton R, et al. Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis[J]. J Cell Mol Med, 2020, 24(23): 14026-38. DOI: 10.1111/jcmm.16013 |
9 | Zhou X, Trinh-Minh T, Tran-Manh C, et al. Impaired mitochondrial transcription factor A expression promotes mitochondrial damage to drive fibroblast activation and fibrosis in systemic sclerosis[J]. Arthritis Rheumatol, 2022, 74(5): 871-81. DOI: 10.1002/art.42033 |
10 | Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments[J]. Bioinformatics, 2012, 28(6): 882-3. DOI: 10.1093/bioinformatics/bts034 |
11 | Chen BY, Li YX, Yan YP, et al. Construction and analysis of heart failure diagnosis model based on random forest and artificial neural network[J]. Medicine, 2022, 101(41): e31097. DOI: 10.1097/md.0000000000031097 |
12 | Rongvaux A. Innate immunity and tolerance toward mitochondria[J]. Mitochondrion, 2018, 41: 14-20. DOI: 10.1016/j.mito.2017.10.007 |
13 | Kaufman BA, Van Houten B. POLB: a new role of DNA polymerase beta in mitochondrial base excision repair[J]. DNA Repair, 2017, 60: A1-A5. DOI: 10.1016/j.dnarep.2017.11.002 |
14 | Sykora P, Kanno S, Akbari M, et al. DNA polymerase beta participates in mitochondrial DNA repair[J]. Mol Cell Biol, 2017, 37(16): e00237-17. DOI: 10.1128/mcb.00237-17 |
15 | Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network[J]. Free Radic Biol Med, 2016, 95: 27-42. DOI: 10.1016/j.freeradbiomed.2016.02.028 |
16 | Xia YC, Wang GH, Jiang ML, et al. A novel biological activity of the STAT3 inhibitor stattic in inhibiting glutathione reductase and suppressing the tumorigenicity of human cervical cancer cells via a ROS-dependent pathway[J]. Onco Targets Ther, 2021, 14: 4047-60. DOI: 10.2147/ott.s313507 |
17 | Niihori T, Aoki Y, Narumi Y, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome[J]. Nat Genet, 2006, 38(3): 294-6. DOI: 10.1038/ng1749 |
18 | Schubbert S, Zenker M, Rowe SL, et al. Germline KRAS mutations cause Noonan syndrome[J]. Nat Genet, 2006, 38(3): 331-6. DOI: 10.1038/ng1748 |
19 | Groesser L, Herschberger E, Ruetten A, et al. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome[J]. Nat Genet, 2012, 44(7): 783-7. DOI: 10.1038/ng.2316 |
20 | Aslam A, Salam A, Griffiths CE, et al. Naevus sebaceus: a mosaic RASopathy[J]. Clin Exp Dermatol, 2014, 39(1): 1-6. DOI: 10.1111/ced.12209 |
21 | Li RQ, Liu RQ, Zheng SY, et al. Comprehensive analysis of prognostic value and immune infiltration of the NT5DC family in hepatocellular carcinoma[J]. J Oncol, 2022, 2022: 2607878. DOI: 10.1155/2022/2607878 |
22 | Li KS, Zhu XD, Liu HD, et al. NT5DC2 promotes tumor cell proliferation by stabilizing EGFR in hepatocellular carcinoma[J]. Cell Death Dis, 2020, 11(5): 335. DOI: 10.1038/s41419-020-2549-2 |
23 | Qiu LX, Gong GC, Wu WJ, et al. A novel prognostic signature for idiopathic pulmonary fibrosis based on five-immune-related genes[J]. Ann Transl Med, 2021, 9(20): 1570. DOI: 10.21037/atm-21-4545 |
24 | Jiménez SA, Castro SV, Piera-Velázquez S. Role of growth factors in the pathogenesis of tissue fibrosis in systemic sclerosis[J]. Curr Rheumatol Rev, 2010, 6(4): 283-94. DOI: 10.2174/157339710793205611 |
25 | Piera-Velazquez S, Makul A, Jiménez SA. Increased expression of NAPDH oxidase 4 in systemic sclerosis dermal fibroblasts: regulation by transforming growth factor Β[J]. Arthritis Rheumatol, 2015, 67(10): 2749-58. DOI: 10.1002/art.39242 |
26 | Cho SY, Oh Y, Jeong EM, et al. Amplification of transglutaminase 2 enhances tumor-promoting inflammation in gastric cancers[J]. Exp Mol Med, 2020, 52(5): 854-64. DOI: 10.1038/s12276-020-0444-7 |
27 | Wang K, Zu CH, Zhang Y, et al. Blocking TG2 attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting EMT[J]. Respir Physiol Neurobiol, 2020, 276: 103402. DOI: 10.1016/j.resp.2020.103402 |
28 | Tabata K, Mikita N, Yasutake M, et al. Up-regulation of IGF-1, RANTES and VEGF in patients with anti-centromere antibody-positive early/mild systemic sclerosis[J]. Mod Rheumatol, 2021, 31(1): 171-6. DOI: 10.1080/14397595.2020.1726599 |
29 | Hamaguchi Y, Fujimoto M, Matsushita T, et al. Elevated serum insulin-like growth factor (IGF-1) and IGF binding protein-3 levels in patients with systemic sclerosis: possible role in development of fibrosis[J]. J Rheumatol, 2008, 35(12): 2363-71. DOI: 10.3899/jrheum.080340 |
30 | Jin W, Zheng Y, Zhu P. T cell abnormalities in systemic sclerosis[J]. Autoimmun Rev, 2022, 21(11): 103185. DOI: 10.1016/j.autrev.2022.103185 |
31 | DJrMesquita, Cruvinel WM, Resende LS, et al. Follicular helper T cell in immunity and autoimmunity [J]. Braz J Med Biol Res, 2016, 49(5): e5209. DOI: 10.1590/1414-431x20165209 |
32 | Jaguin M, Fardel O, Lecureur V. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation[J]. Toxicol Appl Pharmacol, 2015, 285(3): 170-8. DOI: 10.1016/j.taap.2015.04.007 |
33 | Cardamone C, Parente R, Feo GD, et al. Mast cells as effector cells of innate immunity and regulators of adaptive immunity[J]. Immunol Lett, 2016, 178: 10-4. DOI: 10.1016/j.imlet.2016.07.003 |
34 | Lescoat A, Ballerie A, Jouneau S, et al. M1/M2 polarisation state of M-CSF blood-derived macrophages in systemic sclerosis[J]. Ann Rheum Dis, 2019, 78(11): e127. DOI: 10.1136/annrheumdis-2018-214333 |
35 | Maehara T, Kaneko N, Perugino CA, et al. Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis[J]. J Clin Invest, 2020, 130(5): 2451-64. DOI: 10.1172/jci131700 |
[1] | Lu ZHANG, Huanzhang DING, Haoran XU, Ke CHEN, Bowen XU, Qinjun YANG, Di WU, Jiabing TONG, Zegeng LI. Shenqi Buzhong Formula ameliorates mitochondrial dysfunction in a rat model of chronic obstructive pulmonary disease by activating the AMPK/SIRT1/PGC-1α pathway [J]. Journal of Southern Medical University, 2025, 45(5): 969-976. |
[2] | Meimei CHEN, Yang WANG, Huangwei LEI, Fei ZHANG, Ruina HUANG, Zhaoyang YANG. Construction of recognition models for subthreshold depression based on multiple machine learning algorithms and vocal emotional characteristics [J]. Journal of Southern Medical University, 2025, 45(4): 711-717. |
[3] | Luyu LIU, Maowei GONG, Guosong LIAO, Weixing ZHAO, Qiang FU. Hypertension exacerbates postoperative learning and memory impairment in rats possibly due to UCP2 downregulation-mediated mitochondrial dysfunction [J]. Journal of Southern Medical University, 2025, 45(4): 725-735. |
[4] | Ming LIAO, Wenhua ZHONG, Ran ZHANG, Juan LIANG, Wentaorui XU, Wenjun WAN, Chao LI Shu WU. Protein C activator derived from snake venom protects human umbilical vein endothelial cells against hypoxia-reoxygenation injury by suppressing ROS via upregulating HIF-1α and BNIP3 [J]. Journal of Southern Medical University, 2025, 45(3): 614-621. |
[5] | Kelei GUO, Yingli LI, Chenguang XUAN, Zijun HOU, Songshan YE, Linyun LI, Liping CHEN, Li HAN, Hua BIAN. Yiqi Yangyin Huazhuo Tongluo Formula alleviates diabetic podocyte injury by regulating miR-21a-5p/FoxO1/PINK1-mediated mitochondrial autophagy [J]. Journal of Southern Medical University, 2025, 45(1): 27-34. |
[6] | Junping ZHAN, Shuo HUANG, Qingliang MENG, Wei FAN, Huimin GU, Jiakang CUI, Huilian WANG. Buyang Huanwu Decoction reduces mitochondrial autophagy in rheumatoid arthritis synovial fibroblasts in hypoxic culture by inhibiting the BNIP3-PI3K/Akt pathway [J]. Journal of Southern Medical University, 2025, 45(1): 35-42. |
[7] | Lili CHEN, Tianyu WU, Ming ZHANG, Zixia DING, Yan ZHANG, Yiqing YANG, Jiaqian ZHENG, Xiaonan ZHANG. Identification of potential biomarkers and immunoregulatory mechanisms of rheumatoid arthritis based on multichip co-analysis of GEO database [J]. Journal of Southern Medical University, 2024, 44(6): 1098-1108. |
[8] | Caiyu SHEN, Shuai WANG, Ruiying ZHOU, Yuhe WANG, Qin GAO, Xingzhi CHEN, Shu YANG. Prediction of risk of in-hospital death in patients with chronic heart failure complicated by lung infections using interpretable machine learning [J]. Journal of Southern Medical University, 2024, 44(6): 1141-1148. |
[9] | Wei ZHOU, Jun NIE, Jia HU, Yizhi JIANG, Dafa ZHANG. Differential expressions of endoplasmic reticulum stress-associated genes in aortic dissection and their correlation with immune cell infiltration [J]. Journal of Southern Medical University, 2024, 44(5): 859-866. |
[10] | WANG Zining, YANG Ming, LI Shuanglei, CHI Haitao, WANG Junhui, XIAO Cangsong. A transcriptomic analysis of correlation between mitochondrial function and energy metabolism remodeling in mice with myocardial fibrosis following myocardial infarction [J]. Journal of Southern Medical University, 2024, 44(4): 666-674. |
[11] | Chengcheng JIANG, Yangyang LI, Kexin DUAN, Tingting ZHAN, Zilong CHEN, Yongxue WANG, Rui ZHAO, Caiyun MA, Yu GUO, Changqing LIU. Parkin deletion affects PINK1/Parkin-mediated mitochondrial autophagy to exacerbate neuroinflammation and accelerate progression of Parkinson's disease in mice [J]. Journal of Southern Medical University, 2024, 44(12): 2359-2366. |
[12] | Xiaoyin HUANG, Fenglian CHEN, Yu ZHANG, Shujun LIANG. A predictive model for survival outcomes of glioma patients based on multi-parametric, multi-regional MRI radiomics features and clinical features [J]. Journal of Southern Medical University, 2024, 44(10): 2004-2014. |
[13] | HE Huishan, GUO Erjia, MENG Wenyi, WANG Yu, WANG Wen, HE Wenle, WU Yuankui, YANG Wei. Predicting cerebral glioma enhancement pattern using a machine learning-based magnetic resonance imaging radiomics model [J]. Journal of Southern Medical University, 2024, 44(1): 194-200. |
[14] | YE Hongwei, ZHANG Yuming, YUN Qi, DU Ruoli, LI Lu, LI Yuping, GAO Qin. Resveratrol alleviates hyperglycemia-induced cardiomyocyte hypertrophy by maintaining mitochondrial homeostasis via enhancing SIRT1 expression [J]. Journal of Southern Medical University, 2024, 44(1): 45-51. |
[15] | YU Jiachi, LI Ruibing, XIA Tian, WANG Jianan, JIN Jiacheng, YUAN Manqiu, LI Mianyang. PDCD4 knockdown ameliorates lipopolysaccharide- induced endothelial cell damage by improving mitochondrial dynamics [J]. Journal of Southern Medical University, 2024, 44(1): 25-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||