Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (12): 2359-2366.doi: 10.12122/j.issn.1673-4254.2024.12.11
Chengcheng JIANG1(), Yangyang LI1, Kexin DUAN1, Tingting ZHAN1, Zilong CHEN1, Yongxue WANG2, Rui ZHAO2, Caiyun MA2, Yu GUO1,3, Changqing LIU1,2(
)
Received:
2024-06-08
Online:
2024-12-20
Published:
2024-12-26
Contact:
Changqing LIU
E-mail:15955225712@163.com;lcq7813@bbmc.edu.cn
Supported by:
Chengcheng JIANG, Yangyang LI, Kexin DUAN, Tingting ZHAN, Zilong CHEN, Yongxue WANG, Rui ZHAO, Caiyun MA, Yu GUO, Changqing LIU. Parkin deletion affects PINK1/Parkin-mediated mitochondrial autophagy to exacerbate neuroinflammation and accelerate progression of Parkinson's disease in mice[J]. Journal of Southern Medical University, 2024, 44(12): 2359-2366.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.12.11
Fig.1 Behavioral test of wild-type (WT) and Parkin-/- mice after MPTP injection. A: Flow chart of MPTP-PD modeling in the mice. B: Heat map of movement of the mice in open field tests. C: Motion trajectory graph of the mice. D, E: Statistics of total movement distance and the distance in the central area of the mice in open field test. **P<0.01, ***P<0.001.
Fig.2 MPTP-induced Parkinson's disease in WT and Parkin-/- mice. A: Immunofluorescence staining of dopaminergic neuron markers TH (red) and DAPI (blue). B: Protein expression level of TH in the midbrain substantia nigra. C: Analysis of TH protein expression. D: Immunofluorescence staining of α-syn (red) and DAPI (blue) in the mouse midbrain. **P<0.01, ***P<0.001.
Fig.3 Parkin deletion increased neuroinflammation induced by MPTP in mice. A: Immunofluorescence staining of astrocyte markers GFAP (red) and DAPI (blue). B: Co-staining of microglial marker I-ba1 (red) and NLRP3 (green) inflammasomes. C: Analysis of GFAP+ cell count (%). D: Analysis of I-ba1+ cell count (%).**P<0.01, ***P<0.001, ****P<0.0001.
Fig.4 Molecular mechanism of Parkin-mediated regulation of mitochondrial autophagy in midbrain substantia nigra. A: Immunofluorescence assay showing abnormal mitochondrial autophagy (white arrows) in Parkin-/- mice with MPTP injection. B: Western blotting for detecting protein changes in Parkin-mediated regulation of mitochondrial autophagy and neuroinflammation. C: Scanning densitometry for semi-quantitative analysis of the protein expression levels. *P<0.05, **P<0.01 vs WT-MPTP.
1 | Tolosa E, Garrido A, Scholz SW, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurol, 2021, 20(5): 385-97. |
2 | Jankovic J, Tan EK. Parkinson's disease: etiopathogenesis and treatment[J]. J Neurol Neurosurg Psychiatry, 2020, 91(8): 795-808. |
3 | Kwon EH, Steininger J, Scherbaum R, et al. Large-fiber neuropathy in Parkinson's disease: a narrative review[J]. Neurol Res Pract, 2024, 6(1): 51. |
4 | Araújo B, Caridade-Silva R, Soares-Guedes C, et al. Neuro-inflammation and Parkinson's disease-from neurodegeneration to therapeutic opportunities[J]. Cells, 2022, 11(18): 2908. |
5 | Pajares M, Rojo AI, Manda G, et al. Inflammation in Parkinson's disease: mechanisms and therapeutic implications[J]. Cells, 2020, 9(7): 1687. |
6 | Moradi Vastegani S, Nasrolahi A, Ghaderi S, et al. Mitochondrial dysfunction and Parkinson's disease: pathogenesis and therapeutic strategies[J]. Neurochem Res, 2023, 48(8): 2285-308. |
7 | Ryan BJ, Hoek S, Fon EA, et al. Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease[J]. Trends Biochem Sci, 2015, 40(4): 200-10. |
8 | Chen CY, Yang C, Wang J, et al. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer's disease[J]. J Pineal Res, 2021, 71(4): e12774. |
9 | Zuo L, Motherwell MS. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease[J]. Gene, 2013, 532(1): 18-23. |
10 | O’Hanlon ME, Tweedy C, Scialo F, et al. Mitochondrial electron transport chain defects modify Parkinson's disease phenotypes in a Drosophila model[J]. Neurobiol Dis, 2022, 171: 105803. |
11 | Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease[J]. Neuron, 2015, 85(2): 257-73. |
12 | Kamienieva I, Duszyński J, Szczepanowska J. Multitasking guardian of mitochondrial quality: Parkin function and Parkinson's disease[J]. Transl Neurodegener, 2021, 10(1): 5. |
13 | Liu J, Liu WJ, Lu YQ, et al. Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models[J]. Autophagy, 2018, 14(5): 845-61. |
14 | Barazzuol L, Giamogante F, Brini M, et al. PINK1/parkin mediated mitophagy, Ca2+ signalling, and ER-mitochondria contacts in Parkinson's disease[J]. Int J Mol Sci, 2020, 21(5): 1772. |
15 | Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells[J]. Curr Opin Cell Biol, 2015, 33: 95-101. |
16 | Wasner K, Smajic S, Ghelfi J, et al. Parkin deficiency impairs mitochondrial DNA dynamics and propagates inflammation[J]. Mov Disord, 2022, 37(7): 1405-15. |
17 | Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J]. Nat Cell Biol, 2010, 12(2): 119-31. |
18 | Ren ZL, Wang CD, Wang T, et al. Ganoderma lucidum extract ameliorates MPTP-induced Parkinsonism and protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis[J]. Acta Pharmacol Sin, 2019, 40(4): 441-50. |
19 | Chia SJ, Tan EK, Chao YX. Historical perspective: models of Parkinson's disease[J]. Int J Mol Sci, 2020, 21(7): E2464. |
20 | Xu JJ, Li YY, Zhu H, et al. Therapeutic function of a novel rat induced pluripotent stem cell line in a 6-OHDA-induced rat model of Parkinson's disease[J]. Int J Mol Med, 2022, 50(6): 140. |
21 | Noda S, Sato S, Fukuda T, et al. Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice[J]. Neurobiol Dis, 2020, 136: 104717. |
22 | Li J, Yang DM, Li ZP, et al. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases[J]. Ageing Res Rev, 2023, 84: 101817. |
23 | Zhang XW, Feng N, Liu YC, et al. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy[J]. Sci Adv, 2022, 8(32): eabo0789. |
24 | Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, et al. The involvement of neuroinflammation in the onset and progression of Parkinson's disease[J]. Int J Mol Sci, 2023, 24(19): 14582. |
25 | Quinn PMJ, Moreira PI, Ambrósio AF, et al. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation[J]. Acta Neuropathol Commun, 2020, 8(1): 189. |
26 | Iorio R, Celenza G, Petricca S. Multi-target effects of β‑caryo-phyllene and carnosic acid at the crossroads of mitochondrial dysfunction and neurodegeneration: from oxidative stress to microglia-mediated neuroinflammation[J]. Antioxidants, 2022, 11(6): 1199. |
27 | Sun K, Jing XZ, Guo JC, et al. Mitophagy in degenerative joint diseases[J]. Autophagy, 2021, 17(9): 2082-92. |
28 | Panicker N, Kam TI, Wang H, et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease[J]. Neuron, 2022, 110(15): 2422-37.e9. |
29 | Lee E, Hwang I, Park S, et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration[J]. Cell Death Differ, 2019, 26(2): 213-28. |
30 | Zengeler KE, Lukens JR. Taking the parkin brakes off of neuronal NLRP3 drives inflammasome activation and neurodegeneration in Parkinson's disease[J]. Neuron, 2022, 110(15): 2356-8. |
31 | Sliter DA, Martinez J, Hao L, et al. Parkin and PINK1 mitigate STING-induced inflammation[J]. Nature, 2018, 561(7722): 258-62. |
32 | Eldeeb MA, Thomas RA, Ragheb MA, et al. Mitochondrial quality control in health and in Parkinson's disease[J]. Physiol Rev, 2022, 102(4): 1721-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||