Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (5): 876-884.doi: 10.12122/j.issn.1673-4254.2024.05.09
• Basic Research • Previous Articles Next Articles
Feixia WANG1,2,3(), Zheng ZHANG2,3, Yan SUN2,3, Liujing YANG1,2,3, Tongtong GUO1,2,3, Yeting PAN1,2,3, Songtao DING1, Lin JIANG1, Handeng LIU1,2,3(
)
Received:
2023-12-15
Online:
2024-05-20
Published:
2024-06-06
Contact:
Handeng LIU
E-mail:fiexia@stu.cqmu.edu.cn;hdliu@cqmu.edu.cn
Feixia WANG, Zheng ZHANG, Yan SUN, Liujing YANG, Tongtong GUO, Yeting PAN, Songtao DING, Lin JIANG, Handeng LIU. Bmal1 mediates the neuroprotective effect of sodium butyrate in a mouse model of Parkinson's disease[J]. Journal of Southern Medical University, 2024, 44(5): 876-884.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.05.09
Fig.1 NaB improves motor dysfunction and relieves anxiety symptoms in PD mice. A: Pole test. B: Beam test. C: Average tension of pull test. D: The maximum tension in pull test. E: Mean speed in open field test. F: Total moving distance in open field test. G: Time in the central area in open field test. H: Representative movement tracks in open field test. n=11 in NC group, n=10 in PD group, n=13 in NaB group. *P<0.05, **P<0.01, ***P<0.001.
Fig.2 NaB reverses upregulation of α‑syn and downregulation of TH protein expression in the striatum of PD mice. A: Western blots of TH and α-syn proteins. B, C: Quantitative analysis of protein expression levels pf TH and α-syn (n=3). *P<0.05, **P<0.01.
Fig.3 NaB treatment reduces colonic inflammatory factor levels and increases colonic tight junction protein expressions in PD mice. A: Western blots of NF‑κB, IL-6, and TNF‑α in mouse colon. B: Western blots of ZO-1, Occludin, and Claudin proteins. C: HE staining of mouse colon tissues (Original magnification: ×100). D-I: Quantitative analysis of the protein expression levels of NF‑κB, IL-6, TNF‑α, ZO-1, Occludin and Claudin (n=3). *P<0.05, **P<0.01.
Fig.4 Differentially expressed genes (DEGs) in PD mice with NaB treatment. A: Schematic diagram of RNA sequencing of mouse colon tissues. B: Heat map of DEGs. C: Scatter plot of DEGs between PD and NC groups. D: Scatter plot of DEGs between NaB and PD groups. FC>1.2, P<0.05.
Fig.5 GO and KEGG analysis of the DEGs in PD mice with NaB treatment. A: GO analysis of DEGs between PD and NC group. B: GO analysis of DEGs between NaB and PD groups. C: KEGG analysis of DEGs between PD and NC groups. D: KEGG analysis of DEGs between NaB and PD group. FC>1.2, P<0.05.
Fig.6 Validation of RNA sequencing results of Bmal1. A: Venn diagram. B, C: qRT-PCR detection of relative expression of Npas2 and Bmal1 mRNA in mouse colonic tissues. D, F: Western blots of Npas2 and Bmal1 proteins. E, G: Quantitative analysis of the protein expression levels of Npas2 and Bmal1 (n=3). *P<0.05, **P<0.01, ***P<0.001.
1 | Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, et al. The epidemiology of Parkinson's disease[J]. Lancet, 2024, 403(10423): 283-92. DOI: 10.1016/s0140-6736(23)01419-8 |
2 | Elfil M, Bayoumi A, Sayed A, et al. Stroke in Parkinson's disease: a review of epidemiological studies and potential pathophysiological mechanisms[J]. Acta Neurol Belg, 2023, 123(3): 773-83. DOI: 10.1007/s13760-023-02202-4 |
3 | Yemula N, Dietrich C, Dostal V, et al. Parkinson's disease and the gut: symptoms, nutrition, and microbiota[J]. J Parkinsons Dis, 2021, 11(4): 1491-505. DOI: 10.3233/jpd-212707 |
4 | Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease[J]. Cell, 2016, 167(6): 1469-80. e12. DOI: 10.1016/j.cell.2016.11.018 |
5 | Cheng QC, Wang JW, Li M, et al. CircSV2b participates in oxidative stress regulation through miR-5107-5p-Foxk1-Akt1 axis in Parkinson's disease[J]. Redox Biol, 2022, 56: 102430. DOI: 10.1016/j.redox.2022.102430 |
6 | González-Rodríguez P, Zampese E, Stout KA, et al. Disruption of mitochondrial complex I induces progressive Parkinsonism[J]. Nature, 2021, 599(7886): 650-6. DOI: 10.1038/s41586-021-04059-0 |
7 | Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis[J]. Med Res Rev, 2024, 44(1): 365-405. DOI: 10.1002/med.21987 |
8 | Esteves AR, Munoz-Pinto MF, Nunes-Costa D, et al. Footprints of a microbial toxin from the gut microbiome to mesencephalic mitochondria[J]. Gut, 2023, 72(1): 73-89. DOI: 10.1136/gutjnl-2021-326023 |
9 | Beach TG, Adler CH, Sue LI, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders[J]. Acta Neuropathol, 2010, 119(6): 689-702. DOI: 10.1007/s00401-010-0664-3 |
10 | Hawkes CH, Del Tredici K, Braak H. Parkinson's disease: a dual-hit hypothesis[J]. Neuropathol Appl Neurobiol, 2007, 33(6): 599-614. DOI: 10.1111/j.1365-2990.2007.00874.x |
11 | Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson's disease[J]. Neuron, 2019, 103(4): 627-41.e7. DOI: 10.1016/j.neuron.2019.05.035 |
12 | Svensson E, Horváth-Puhó E, Thomsen RW, et al. Vagotomy and subsequent risk of Parkinson's disease[J]. Ann Neurol, 2015, 78(4): 522-9. DOI: 10.1002/ana.24448 |
13 | Mayer EA, Nance K, Chen S. The gut-brain axis[J]. Annu Rev Med, 2022, 73: 439-53. DOI: 10.1146/annurev-med-042320-014032 |
14 | Wang Q, Luo YQ, Ray Chaudhuri K, et al. The role of gut dysbiosis in Parkinson's disease: mechanistic insights and therapeutic options[J]. Brain, 2021, 144(9): 2571-93. DOI: 10.1093/brain/awab156 |
15 | LeWitt PA. Levodopa therapy for Parkinson's disease: Pharmacokinetics and pharmacodynamics[J]. Mov Disord, 2015, 30(1): 64-72. DOI: 10.1002/mds.26082 |
16 | Reich SG, Savitt JM. Parkinson's disease[J]. Med Clin N Am, 2019, 103(2): 337-50. DOI: 10.1016/j.mcna.2018.10.014 |
17 | Wei HL, Yu CY, Zhang C, et al. Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis[J]. Biomed Pharmacother, 2023, 160: 114308. DOI: 10.1016/j.biopha.2023.114308 |
18 | Szacawa E, Dudek K, Bednarek D, et al. A pilot study on the effect of a novel feed additive containing exogenous enzymes, acidifiers, sodium butyrate and silicon dioxide nanoparticles on selected cellular immune indices and body weight gains of calves[J]. J Vet Res, 2021, 65(4): 497-504. DOI: 10.2478/jvetres-2021-000068 |
19 | Li CY, Chen JL, Zhao M, et al. Effect of sodium butyrate on slaughter performance, serum indexes and intestinal barrier of rabbits[J]. J Anim Physiol Anim Nutr, 2022, 106(1): 156-66. DOI: 10.1111/jpn.13571 |
20 | Lan RX, Zhao ZH, Li SQ, et al. Sodium butyrate as an effective feed additive to improve performance, liver function, and meat quality in broilers under hot climatic conditions[J]. Poult Sci, 2020, 99(11): 5491-500. DOI: 10.1016/j.psj.2020.06.042 |
21 | Zhou TT, Xu HW, Cheng X, et al. Sodium butyrate attenuates diabetic kidney disease partially via histone butyrylation modification[J]. Mediators Inflamm, 2022, 2022: 7643322. DOI: 10.1155/2022/7643322 |
22 | Zhou ZH, Xu NB, Matei N, et al. Sodium butyrate attenuated neuronal apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats[J]. J Cereb Blood Flow Metab, 2021, 41(2): 267-81. DOI: 10.1177/0271678x20910533 |
23 | Chen SJ, Chen CC, Liao HY, et al. Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with parkinson disease[J]. Neurology, 2022, 98(8): e848-58. DOI: 10.1212/wnl.0000000000013225 |
24 | Guo TT, Zhang Z, Sun Y, et al. Neuroprotective effects of sodium butyrate by restoring gut microbiota and inhibiting TLR4 signaling in mice with MPTP-induced Parkinson's disease[J]. Nutrients, 2023, 15(4): 930. DOI: 10.3390/nu15040930 |
25 | Dodiya HB, Forsyth CB, Voigt RM, et al. Chronic stress-induced gut dysfunction exacerbates Parkinson's disease phenotype and pathology in a rotenone-induced mouse model of Parkinson's disease[J]. Neurobiol Dis, 2020, 135: 104352. DOI: 10.1016/j.nbd.2018.12.012 |
26 | Lee HS, Lobbestael E, Vermeire S, et al. Inflammatory bowel disease and Parkinson's disease: common pathophysiological links[J]. Gut, 2021, 70(2): 408-17. |
27 | Facchin S, Vitulo N, Calgaro M, et al. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease[J]. Neurogastroenterol Motil, 2020, 32(10): e13914. DOI: 10.1111/nmo.13914 |
28 | Zheng YJ, Pan LY, Wang FX, et al. Neural function of Bmal1: an overview[J]. Cell Biosci, 2023, 13(1): 1. DOI: 10.1186/s13578-022-00947-8 |
29 | Early JO, Menon D, Wyse CA, et al. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2[J]. Proc Natl Acad Sci USA, 2018, 115(36): E8460-8. DOI: 10.1073/pnas.1800431115 |
30 | Breen DP, Vuono R, Nawarathna U, et al. Sleep and circadian rhythm regulation in early Parkinson disease[J]. JAMA Neurol, 2014, 71(5): 589-95. DOI: 10.1001/jamaneurol.2014.65 |
31 | Liu WW, Wei SZ, Huang GD, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson's disease mouse model[J]. FASEB J, 2020, 34(5): 6570-81. DOI: 10.1096/fj.201901565rr |
[1] | GUI Jianjun, SUN Xiaodong, WEN Shu, LIU Xin, QIN Bingqing, SANG Ming. Resveratrol protects dopaminergic neurons in a mouse model of Parkinson's disease by regulating the gut-brain axis via inhibiting the TLR4 signaling pathway [J]. Journal of Southern Medical University, 2024, 44(2): 270-279. |
[2] | FAN Jianing, SUN Yingjie, LIANG Bing, ZHANG Xiaoyan, XIAO Cheng, HUANG Zeqing. Role of gut microbiota in perioperative neurocognitive disorders after cardiopulmonary bypass surgery in rats with humanized gut flora [J]. Journal of Southern Medical University, 2023, 43(6): 964-969. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||