Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (11): 2504-2510.doi: 10.12122/j.issn.1673-4254.2025.11.23
Huirong XIE(
), Chaobin HU, Guohua LIANG, Hongzhe HAN, Mu HUANG, Qianjin FENG(
)
Received:2025-07-27
Online:2025-11-20
Published:2025-11-28
Contact:
Qianjin FENG
E-mail:450282452@qq.com;1271992826@qq.com
Supported by:Huirong XIE, Chaobin HU, Guohua LIANG, Hongzhe HAN, Mu HUANG, Qianjin FENG. Design and validation of a multimodal model integrating text and imaging data for intelligent assessment of psychological stress in college students[J]. Journal of Southern Medical University, 2025, 45(11): 2504-2510.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.11.23
| Image | Text | Label |
|---|---|---|
![]() | 毫无压力/一切发生皆有利于我/开心就好/一点点压力, 正好够推动我向前/向往自由的生活, 与家人一起出去旅游, 好好地感受世界 | Stress Level 0 |
![]() | 都会好起来的/迷茫中…/燃尽/顺其自然/压力就是动力!/最近课好多好忙好累压力好大啊/有点累/都会好起来的 | Stress Level 1 |
![]() | 弃学中, 误Q/迷茫 没有动力 悲观 低迷/压力好大/生活好难, 我好烦/生活给我一巴掌 我说没有上次响 | Stress Level 2 |
Tab.1 Instances of annotation of text and image data from social media
| Image | Text | Label |
|---|---|---|
![]() | 毫无压力/一切发生皆有利于我/开心就好/一点点压力, 正好够推动我向前/向往自由的生活, 与家人一起出去旅游, 好好地感受世界 | Stress Level 0 |
![]() | 都会好起来的/迷茫中…/燃尽/顺其自然/压力就是动力!/最近课好多好忙好累压力好大啊/有点累/都会好起来的 | Stress Level 1 |
![]() | 弃学中, 误Q/迷茫 没有动力 悲观 低迷/压力好大/生活好难, 我好烦/生活给我一巴掌 我说没有上次响 | Stress Level 2 |
| [1] | Fan YY, Liu J, Zeng YY, et al. Factors associated with non-suicidal self-injury in Chinese adolescents: a meta-analysis[J]. Front Psychiatry, 2021, 12: 747031. doi:10.3389/fpsyt.2021.747031 |
| [2] | Huang JP, Nigatu YT, Smail-Crevier R, et al. Interventions for common mental health problems among university and college students: a systematic review and meta-analysis of randomized controlled trials[J]. J Psychiatr Res, 2018, 107: 1-10. doi:10.1016/j.jpsychires.2018.09.018 |
| [3] | Bruffaerts R, Mortier P, Kiekens G, et al. Mental health problems in college freshmen: Prevalence and academic functioning[J]. J Affect Disord, 2018, 225: 97-103. doi:10.1016/j.jad.2017.07.044 |
| [4] | Cage E, Jones E, Ryan G, et al. Student mental health and transitions into, through and out of university: student and staff perspectives[J]. J Furth High Educ, 2021, 45(8): 1076-89. doi:10.1080/0309877x.2021.1875203 |
| [5] | Pedrelli P, Nyer M, Yeung A, et al. College students: mental health problems and treatment considerations[J]. Acad Psychiatry, 2015, 39(5): 503-11. doi:10.1007/s40596-014-0205-9 |
| [6] | Hickey BA, Chalmers T, Newton P, et al. Smart devices and wearable technologies to detect and monitor mental health conditions and stress: a systematic review[J]. Sensors (Basel), 2021, 21(10): 3461. doi:10.3390/s21103461 |
| [7] | Ophir Y, Tikochinski R, Asterhan CSC, et al. Deep neural networks detect suicide risk from textual facebook posts[J]. Sci Rep, 2020, 10(1): 16685. doi:10.1038/s41598-020-73917-0 |
| [8] | 夏先益. 基于文本挖掘的在线论坛用户心理健康自动评估[D]. 南昌: 江西财经大学, 2019. |
| [9] | 张凤云. 基于ON-LSTM的文本情绪分析方法研究[D]. 郑州: 郑州大学, 2020. |
| [10] | Cole EJ, Phillips AL, Bentzley BS, et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial[J]. Am J Psychiatry, 2022, 179(2): 132-41. doi:10.1176/appi.ajp.2021.20101429 |
| [11] | Baker J, Ngo H, Efthimiou TN, et al. Electrical stimulation of smiling muscles reduces visual processing load and enhances happiness perception in neutral faces[J]. Commun Psychol, 2025, 3(1): 94. doi:10.1038/s44271-025-00281-y |
| [12] | 章 荪, 尹春勇. 基于多任务学习的时序多模态情感分析模型[J]. 计算机应用, 2021, 41(6): 1631-9. |
| [13] | Zhu QJ, Xiong JC, Peng LL. College students' mental health evaluation model based on tensor fusion network with multimodal data during the COVID-19 pandemic[J]. Biotechnol Genet Eng Rev, 2024, 40(3): 1821-35. doi:10.1080/02648725.2023.2196846 |
| [14] | Fu ZW, Liu F, Xu Q, et al. LMR-CBT: learning modality-fused representations with CB-Transformer for multimodal emotion recognition from unaligned multimodal sequences[J]. Front Comput Sci, 2023, 18(4): 184314. doi:10.1007/s11704-023-2444-y |
| [15] | Kalınkara Y, Talan T. Psychological balances in the digital world: dynamic relationships among social media addiction, depression, anxiety, academic self-efficacy, general belongingness, and life satisfaction[J]. J Genet Psychol, 2025, 186(2): 85-113. doi:10.1080/00221325.2024.2400342 |
| [16] | Chandra Guntuku S, Buffone A, Jaidka K, et al. Understanding and measuring psychological stress using social media[J]. Proc Int AAAI Conf Web Soc Medium, 2019, 13: 214-25. doi:10.1609/icwsm.v13i01.3223 |
| [17] | Wolfers LN, Utz S. Social media use, stress, and coping[J]. Curr Opin Psychol, 2022, 45: 101305. doi:10.1016/j.copsyc.2022.101305 |
| [18] | Khoo LS, Lim MK, Chong CY, et al. Machine learning for multimodal mental health detection: a systematic review of passive sensing approaches[J]. Sensors (Basel), 2024, 24(2): 348. doi:10.3390/s24020348 |
| [19] | Du C, Liu C, Balamurugan P, et al. Deep learning-based mental health monitoring scheme for college students using convolutional neural network[J]. Int J Artif Intell Tools, 2021, 30(6n08): 2140014. |
| [20] | Asad MM, Erum D, Churi P, et al. Effect of technostress on psychological well-being of post-graduate students: a perspective and correlational study of higher education management[J]. Int J Inf Manag Data Insights, 2023, 3(1): 100149. doi:10.1016/j.jjimei.2022.100149 |
| [21] | Taylor JM. Psychometric analysis of the ten-item perceived stress scale[J]. Psychol Assess, 2015, 27(1): 90-101. doi:10.1037/a0038100 |
| [22] | 樊蓓蓓, 张春华. 大学生心理健康的标准及评估(英文)[J]. 中国临床康复, 2006, 46: 223-5. |
| [23] | Zhao F, Zhang CC, Geng BC. Deep multimodal data fusion[J]. ACM Comput Surv, 2024, 56(9): 1-36. doi:10.1145/3649447 |
| [24] | Mukta MSH, Ahmad J, Zaman A, et al. Attention and meta-heuristic based general self-efficacy prediction model from multimodal social media dataset[J]. IEEE Access, 2024, 12: 36853-73. doi:10.1109/access.2024.3373558 |
| [25] | Deng H, Yang ZG, Hao TY, et al. Multimodal affective computing with dense fusion transformer for inter- and intra-modality interactions[J]. IEEE Trans Multimed, 2022, 25: 6575-87. doi:10.1109/tmm.2022.3211197 |
| [26] | Zhao YX, Cao XY, Lin JL, et al. Multimodal affective states recognition based on multiscale CNNs and biologically inspired decision fusion model[J]. IEEE Trans Affect Comput, 2023, 14(2): 1391-403. doi:10.1109/taffc.2021.3093923 |
| [27] | Li WB, Tan RC, Xing Y, et al. A multimodal psychological, physiological and behavioural dataset for human emotions in driving tasks[J]. Sci Data, 2022, 9(1): 481. doi:10.1038/s41597-022-01557-2 |
| [28] | Zhu LN, Zhu ZC, Zhang CW, et al. Multimodal sentiment analysis based on fusion methods: a survey[J]. Inf Fusion, 2023, 95: 306-25. doi:10.1016/j.inffus.2023.02.028 |
| [29] | University DP, Saleem Abdullah SM, Abdulazeez AM, et al. Facial expression recognition based on deep learning convolution neural network: a review[J]. J Soft Comput Data Min, 2021, 2(1): 53-65. |
| [30] | 耿亿霖, 臧 琳, 毛飞跃, 等. 基于U-Net神经网络的CALIPSO产品漏检层次分类[J]. 光学学报, 2024, 44(24): 97-106. |
| [31] | Fu LY, Li SW. A new semantic segmentation framework based on UNet[J]. Sensors (Basel), 2023, 23(19): 8123. doi:10.3390/s23198123 |
| [32] | Wang X, Jing SH, Dai HF, et al. High-resolution remote sensing images semantic segmentation using improved UNet and SegNet[J]. Comput Electr Eng, 2023, 108: 108734. doi:10.1016/j.compeleceng.2023.108734 |
| [33] | Abdollahi A, Pradhan B, Alamri AM. An ensemble architecture of deep convolutional Segnet and Unet networks for building semantic segmentation from high-resolution aerial images[J]. Geocarto Int, 2022, 37(12): 3355-70. doi:10.1080/10106049.2020.1856199 |
| [34] | Behera RK, Jena M, Rath SK, et al. Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data[J]. Inf Process Manag, 2021, 58(1): 102435. doi:10.1016/j.ipm.2020.102435 |
| [35] | Lindemann B, Müller T, Vietz H, et al. A survey on long short-term memory networks for time series prediction[J]. Procedia CIRP, 2021, 99: 650-5. doi:10.1016/j.procir.2021.03.088 |
| [36] | Shanmuganathan V, Suresh A. LSTM-Markov based efficient anomaly detection algorithm for IoT environment[J]. Appl Soft Comput, 2023, 136: 110054. doi:10.1016/j.asoc.2023.110054 |
| [37] | Wu J, Zhu TL, Zhu JH, et al. A optimized BERT for multimodal sentiment analysis[J]. ACM Trans Multimedia Comput Commun Appl, 2023, 19(2s): 1-12. doi:10.1145/3566126 |
| [1] | Qiucen WU, Xueqi LU, Yaoqi WEN, Yong HONG, Yuliang WU, Chaomin CHEN. A myocardial infarction detection and localization model based on multi-scale field residual blocks fusion with modified channel attention [J]. Journal of Southern Medical University, 2025, 45(8): 1777-1790. |
| [2] | Ziyu ZHENG, Xiaying YANG, Shengjie WU, Shijie ZHANG, Guorong LYU, Peizhong LIU, Jun WANG, Shaozheng HE. A multi-feature fusion-based model for fetal orientation classification from intrapartum ultrasound videos [J]. Journal of Southern Medical University, 2025, 45(7): 1563-1570. |
| [3] | Yadi HE, Xuanru ZHOU, Jinhui JIN, Ting SONG. PE-CycleGAN network based CBCT-sCT generation for nasopharyngeal carsinoma adaptive radiotherapy [J]. Journal of Southern Medical University, 2025, 45(1): 179-186. |
| [4] | Weiyang FANG, Hui XIAO, Shuang WANG, Xiaoming LIN, Chaomin CHEN. A deep learning model based on magnetic resonance imaging and clinical feature fusion for predicting preoperative cytokeratin 19 status in hepatocellular carcinoma [J]. Journal of Southern Medical University, 2024, 44(9): 1738-1751. |
| [5] | Jiazhi OU, Chang'an ZHAN, Feng YANG. An autoencoder model based on one-dimensional neural network for epileptic EEG anomaly detection [J]. Journal of Southern Medical University, 2024, 44(9): 1796-1804. |
| [6] | Chen WANG, Mingqiang MENG, Mingqiang LI, Yongbo WANG, Dong ZENG, Zhaoying BIAN, Jianhua MA. Reconstruction from CT truncated data based on dual-domain transformer coupled feature learning [J]. Journal of Southern Medical University, 2024, 44(5): 950-959. |
| [7] | LONG Kaixing, WENG Danyi, GENG Jian, LU Yanmeng, ZHOU Zhitao, CAO Lei. Automatic classification of immune-mediated glomerular diseases based on multi-modal multi-instance learning [J]. Journal of Southern Medical University, 2024, 44(3): 585-593. |
| [8] | XIAO Hui, FANG Weiyang, LIN Mingjun, ZHOU Zhenzhong, FEI Hongwen, CHEN Chaomin. A multiscale carotid plaque detection method based on two-stage analysis [J]. Journal of Southern Medical University, 2024, 44(2): 387-396. |
| [9] | Caolin LIU, Qingqing ZOU, Menghong WANG, Qinmei YANG, Liwen SONG, Zixiao LU, Qianjin FENG, Yinghua ZHAO. Identification of osteoid and chondroid matrix mineralization in primary bone tumors using a deep learning fusion model based on CT and clinical features: a multi-center retrospective study [J]. Journal of Southern Medical University, 2024, 44(12): 2412-2420. |
| [10] | MI Jia, ZHOU Yujia, FENG Qianjin. A 3D/2D registration method based on reconstruction of orthogonal-view Xray images [J]. Journal of Southern Medical University, 2023, 43(9): 1636-1643. |
| [11] | CHU Zhiqin, QU Yaoming, ZHONG Tao, LIANG Shujun, WEN Zhibo, ZHANG Yu. A Dual-Aware deep learning framework for identification of glioma isocitrate dehydrogenase genotype using magnetic resonance amide proton transfer modalities [J]. Journal of Southern Medical University, 2023, 43(8): 1379-1387. |
| [12] | YU Jiahong, ZHANG Kunpeng, JIN Shuang, SU Zhe, XU Xiaotong, ZHANG Hua. Sinogram interpolation combined with unsupervised image-to-image translation network for CT metal artifact correction [J]. Journal of Southern Medical University, 2023, 43(7): 1214-1223. |
| [13] | ZHOU Hao, ZENG Dong, BIAN Zhaoying, MA Jianhua. A semi-supervised network-based tissue-aware contrast enhancement method for CT images [J]. Journal of Southern Medical University, 2023, 43(6): 985-993. |
| [14] | TENG Lin, WANG Bin, FENG Qianjin. Deep learning-based dose prediction in radiotherapy planning for head and neck cancer [J]. Journal of Southern Medical University, 2023, 43(6): 1010-1016. |
| [15] | WU Xueyang, ZHANG Yu, ZHANG Hua, ZHONG Tao. Whole-brain parcellation for macaque brain magnetic resonance images based on attention mechanism and multi-modality feature fusion [J]. Journal of Southern Medical University, 2023, 43(12): 2118-2125. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||