南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (5): 859-866.doi: 10.12122/j.issn.1673-4254.2024.05.07
收稿日期:
2023-10-26
出版日期:
2024-05-20
发布日期:
2024-06-06
通讯作者:
张大发
E-mail:welson1987@163.com;zhangdafa2256@126.com
作者简介:
周 伟,博士,主治医师,E-mail: welson1987@163.com
基金资助:
Wei ZHOU1(), Jun NIE1, Jia HU2, Yizhi JIANG3, Dafa ZHANG1(
)
Received:
2023-10-26
Online:
2024-05-20
Published:
2024-06-06
Contact:
Dafa ZHANG
E-mail:welson1987@163.com;zhangdafa2256@126.com
Supported by:
摘要:
目的 探讨内质网应激相关基因(ERSAGs)在主动脉夹层疾病(AD)中的差异性表达及免疫浸润相关性,为AD的治疗寻找新的靶点。 方法 检索GEO数据库,下载GSE190635及GSE98770两个主动脉夹层mRNA数据集,R软件分析AD患者主动脉与正常主动脉差异表达基因(DEGs),从GeneCards网站下载ERSAGs基因集。GeneMANIA数据库分析内质网应激(ERS)差异基因晚期糖基化终末产物受体(AGER)相互作用的蛋白。基于GSE98770数据集使用R语言CIBERSORT包计算AD患者主动脉壁组织内22种免疫细胞分布比例。临床收集20例主动脉壁标本,分为AD组和非AD组(n=10/组),qRT-PCR检测AGER表达量。使用TRRUST数据库和NetworkAnalyst数据库分析预测AGER上游转录因子、miRNA及调控作用化合物。 结果 获取到ERS差异基因AGER,与其相互作用的蛋白共有20种,主要生物功能:模式识别受体信号通路,DNA结合转录因子活性的正向调节,骨髓白细胞迁移,白细胞迁移,调节I-kappaB激酶/NF-kappaB信号传导。AD中AEGR表达水平与Treg细胞丰度间呈正相关(r=0.59,P<0.05)。qRT-PCR检测显示,AD组主动脉壁AGER表达量为1.00±0.30,非AD组表达量为1.76±0.68,差异具有统计学意义(P<0.05)。ROC曲线分析显示,AGER预测AD的AUC=0.86(95% CI:0.67~1.00,P=0.0073),cut-off值为1.335,对应的敏感性和特异性分别为80%、90%。AGER调控网络预测到3种转录因子,3种miRNAs,27种化合物。 结论 内质网应激相关基因AGER在主动脉夹层疾病中的低表达,其可能通过Treg细胞影响AD的发生。
周伟, 聂军, 胡佳, 蒋艺枝, 张大发. 内质网应激相关基因在主动脉夹层疾病中的差异性表达及与免疫浸润的相关性[J]. 南方医科大学学报, 2024, 44(5): 859-866.
Wei ZHOU, Jun NIE, Jia HU, Yizhi JIANG, Dafa ZHANG. Differential expressions of endoplasmic reticulum stress-associated genes in aortic dissection and their correlation with immune cell infiltration[J]. Journal of Southern Medical University, 2024, 44(5): 859-866.
Primers | Sequence (5'-3') |
---|---|
β-Actin | F:AGCGAGCATCCCCCAAAGTT; R:GGGCACGAAGGCTCATCATT |
AGER | F: GTGTCCTTCCCAACGGCTC; R: ATTGCCTGGCACCGGAAAA |
表1 qRT-PCR引物序列
Tab.1 Primer sequences for qRT-PCR
Primers | Sequence (5'-3') |
---|---|
β-Actin | F:AGCGAGCATCCCCCAAAGTT; R:GGGCACGAAGGCTCATCATT |
AGER | F: GTGTCCTTCCCAACGGCTC; R: ATTGCCTGGCACCGGAAAA |
图1 AD差异表达基因
Fig.1 Differentially expressed genes (DEGs) in AD. A: Volcano plot of the DEGs in GSE190635. Red points represent up-regulated genes, and blue points represent down-regulated genes; Black points represent genes without significant difference (NS). B: Heatmap of DEGs in GSE190635. C: Volcano plot for the DEGs in GSE98770. D: Heatmap of the DEGs in GSE98770.
图4 免疫细胞浸润分析
Fig.4 Immune cell infiltration analysis in the aorta of AD patients. A: CIBERSORT algorithm-based topography of the 22 immune cells in AD samples in GSE98770 dataset. B: Correlation analysis of the 22 immune cells. C: Correlation analysis of AGER with the 22 immune cells. D: Correlation analysis between Treg cell percentage and AGER expression level. Pearson method, *P<0.05.
图5 主动脉临床标本验证
Fig.5 Validation of AGER mRNA expression in clinical aorta specimens. A: qRT-PCR detection of AGER expression in AD and NAD groups. B: ROC curve analysis. **P<0.01.
TF | Target | Type | PMID |
---|---|---|---|
NFKB1 | AGER | Activation | 18622638;19616578 |
PPARG | AGER | Repression | 18855759 |
RELA | AGER | Activation | 18622638;19616578 |
表2 AGER转录因子
Tab.2 Transcriptional factors (TF) of AGER
TF | Target | Type | PMID |
---|---|---|---|
NFKB1 | AGER | Activation | 18622638;19616578 |
PPARG | AGER | Repression | 18855759 |
RELA | AGER | Activation | 18622638;19616578 |
1 | Mussa FF, Horton JD, Moridzadeh R, et al. Acute aortic dissection and intramural hematoma: a systematic review[J]. JAMA, 2016, 316(7): 754-63. DOI: 10.1001/jama.2016.10026 |
2 | Qin H, Wu H, Chen Y, et al. Early detection of postoperative acute kidney injury in acute stanford type A aortic dissection with Doppler renal resistive index[J]. J Ultrasound Med, 2017, 36(10): 2105-11. DOI: 10.1002/jum.14236 |
3 | Chiu P, Miller DC. Evolution of surgical therapy for Stanford acute type A aortic dissection[J]. Ann Cardiothorac Surg, 2016, 5(4): 275-95. DOI: 10.21037/acs.2016.05.05 |
4 | Alfson DB, Ham SW. Type B aortic dissections: current guidelines for treatment[J]. Cardiol Clin, 2017, 35(3): 387-410. DOI: 10.1016/j.ccl.2017.03.007 |
5 | Del Porto F, di Gioia C, Tritapepe L, et al. The multitasking role of macrophages in Stanford type A acute aortic dissection[J]. Cardiology, 2014, 127(2): 123-9. DOI: 10.1159/000355253 |
6 | del Porto F, Proietta M, Tritapepe L, et al. Inflammation and immune response in acute aortic dissection[J]. Ann Med, 2010, 42(8): 622-9. DOI: 10.3109/07853890.2010.518156 |
7 | Balch WE, Morimoto RI, Dillin A, et al. Adapting proteostasis for disease intervention [J]. Science, 2008, 319: 916-9. DOI: 10.1126/science.1141448 |
8 | Hurtley SM, Bole DG, Hoover-Litty H, et al. Interactions of misfolded influenza virus hemagglutinin with binding protein (BiP)[J]. J Cell Biol, 1989, 108(6): 2117-26. DOI: 10.1083/jcb.108.6.2117 |
9 | Smith MH, Ploegh HL, Weissman JS. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum [J]. Science, 2011, 334: 1086-90. DOI: 10.1126/science.1209235 |
10 | Travers KJ, Patil CK, Wodicka L, et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation[J]. Cell, 2000, 101(3): 249-58. DOI: 10.1016/s0092-8674(00)80835-1 |
11 | Wang L, Song RD, Ma MH, et al. Inhibition of autophagy can promote the apoptosis of bladder cancer cells induced by SC66 through the endoplasmic reticulum stress pathway[J]. Chem Biol Interact, 2023, 384: 110725. DOI: 10.1016/j.cbi.2023.110725 |
12 | Choi SW, Cho W, Oh H, et al. Madecassoside ameliorates hepatic steatosis in high-fat diet-fed mice through AMPK/autophagy-mediated suppression of ER stress[J]. Biochem Pharmacol, 2023, 217: 115815. DOI: 10.1016/j.bcp.2023.115815 |
13 | Zhu X, Chen X, Shen X, et al. PP4R1 accelerates the malignant progression of NSCLC via up-regulating HSPA6 expression and HSPA6-mediated ER stress[J]. Biochim Biophys Acta Mol Cell Res, 2024, 1871(1): 119588. DOI: 10.1016/j.bbamcr.2023.119588 |
14 | Zhu ZW, Pu J, Li YN, et al. RBM25 regulates hypoxic cardiomyocyte apoptosis through CHOP-associated endoplasmic reticulum stress[J]. Cell Stress Chaperones, 2023, 28(6): 861-76. DOI: 10.1007/s12192-023-01380-7 |
15 | Zhao Y, Liu Y, Deng J, et al. Ginsenoside F4 alleviates skeletal muscle insulin resistance by regulating PTP1B in type II diabetes mellitus[J]. J Agric Food Chem, 2023, 71(39): 14263-75. DOI: 10.1021/acs.jafc.3c01262 |
16 | Zhu Q, Guo R, Liu C, et al. Endoplasmic reticulum stress-mediated apoptosis contributing to high glucose-induced vascular smooth muscle cell calcification[J]. J Vasc Res, 2015, 52(5): 291-8. DOI: 10.1159/000442980 |
17 | Deng BY, Liao F, Liu YH, et al. Comprehensive analysis of endoplasmic reticulum stress-associated genes signature of ulcerative colitis[J]. Front Immunol, 2023, 14: 1158648. DOI: 10.3389/fimmu.2023.1158648 |
18 | Franz M, Rodriguez H, Lopes C, et al. GeneMANIA update 2018[J]. Nucleic Acids Res, 2018, 46(W1): W60-4. DOI: 10.1093/nar/gky311 |
19 | Chen BB, Khodadoust MS, Liu CL, et al. Profiling tumor infiltrating immune cells with CIBERSORT[J]. Methods Mol Biol, 2018, 1711: 243-59. DOI: 10.1007/978-1-4939-7493-1_12 |
20 | Han H, Cho JW, Lee S, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions[J]. Nucleic Acids Res, 2018, 46(D1): D380-6. DOI: 10.1093/nar/gkx1013 |
21 | Zhou GY, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis[J]. Nucleic Acids Res, 2019, 47(W1): W234-41. DOI: 10.1093/nar/gkz240 |
22 | Chen HL, Luo SX, Chen HM, et al. ATF3 regulates SPHK1 in cardiomyocyte injury via endoplasmic reticulum stress[J]. Immun Inflamm Dis, 2023, 11(9): e998. DOI: 10.1002/iid3.998 |
23 | Zhou FY, Gao HY, Shang LR, et al. Oridonin promotes endoplasmic reticulum stress via TP53-repressed TCF4 transactivation in colorectal cancer[J]. J Exp Clin Cancer Res, 2023, 42(1): 150. DOI: 10.1186/s13046-023-02702-4 |
24 | Corica D, Pepe G, Currò M, et al. Methods to investigate advanced glycation end-product and their application in clinical practice[J]. Methods, 2022, 203: 90-102. DOI: 10.1016/j.ymeth.2021.12.008 |
25 | Mishra M, Prasad K. AGE-RAGE stress, stressors, and antistressors in health and disease[J]. Int J Angiol, 2018, 27(1): 1-12. DOI: 10.1055/s-0037-1613678 |
26 | Reddy VP, Aryal P, Darkwah EK. Advanced glycation end products in health and disease[J]. Microorganisms, 2022, 10(9): 1848. DOI: 10.3390/microorganisms10091848 |
27 | Fishman SL, Sonmez H, Basman C, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review[J]. Mol Med, 2018, 24(1): 59-66. DOI: 10.1186/s10020-018-0060-3 |
28 | Burr SD, Harmon MB, Jr JAS. The impact of diabetic conditions and AGE/RAGE signaling on cardiac fibroblast migration[J]. Front Cell Dev Biol, 2020, 8: 112-23. DOI: 10.3389/fcell.2020.00112 |
29 | Grond-Ginsbach C, Pjontek R, Aksay SS, et al. Spontaneous arterial dissection: phenotype and molecular pathogenesis[J]. Cell Mol Life Sci, 2010, 67(11): 1799-815. DOI: 10.1007/s00018-010-0276-z |
30 | Raffort J, Lareyre F, Clément M, et al. Monocytes and macrophages in abdominal aortic aneurysm[J]. Nat Rev Cardiol, 2017, 14: 457-71. DOI: 10.1038/nrcardio.2017.52 |
31 | Golledge J, Karan M, Moran CS, et al. Reduced expansion rate of abdominal aortic aneurysms in patients with diabetes may be related to aberrant monocyte-matrix interactions[J]. Eur Heart J, 2008, 29(5): 665-72. DOI: 10.1093/eurheartj/ehm557 |
32 | Rao ZQ, Zheng YD, Xu L, et al. Endoplasmic reticulum stress and pathogenesis of vascular calcification[J]. Front Cardiovasc Med, 2022, 9: 918056. DOI: 10.3389/fcvm.2022.918056 |
33 | Kurihara T, Shimizu-Hirota R, Shimoda M, et al. Neutrophil-derived matrix metalloproteinase 9 triggers acute aortic dissection[J]. Circulation, 2012, 126(25): 3070-80. DOI: 10.1161/circulationaha.112.097097 |
34 | Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6[J]. Nat Rev Cardiol, 2021, 18: 58-68. DOI: 10.1038/s41569-020-0431-7 |
35 | An Z, Qiao F, Lu QJ, et al. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection[J]. Heart Vessels, 2017, 32(12): 1523-35. DOI: 10.1007/s00380-017-1054-8 |
36 | Xu HJ, Li Y, Wang H, et al. Systemic immune-inflammation index predicted short-term outcomes in ATAD patients undergoing surgery[J]. J Card Surg, 2022, 37(4): 969-75. DOI: 10.1111/jocs.16300 |
37 | Ait-Oufella H, Wang Y, Herbin O, et al. Natural regulatory T cells limit angiotensin II-induced aneurysm formation and rupture in mice[J]. Arterioscler Thromb Vasc Biol, 2013, 33(10): 2374-9. DOI: 10.1161/atvbaha.113.301280 |
38 | Hu XX, Schwarz JK, Lewis JS Jr, et al. A microRNA expression signature for cervical cancer prognosis[J]. Cancer Res, 2010, 70(4): 1441-8. DOI: 10.1158/0008-5472.can-09-3289 |
39 | Xu ZJ, Lang DH, Wang D, et al. LncRNA FGD5-AS1 promotes abdominal aortic aneurysm growth through the activation of MMP3 in vascular smooth muscle cells[J]. Int Heart J, 2023, 64(3): 470-82. DOI: 10.1536/ihj.22-106 |
40 | Wang Y, Zhang cheng-xin, Ge sheng-lin, et al. CTBP1-AS2 inhibits proliferation and inducesautophagy in ox-LDL-stimulated vascular smooth musclecells by regulating miR-195-5p/ATG14[J]. Int J Mol Med, 2020, 46(2): 839-48. DOI: 10.3892/ijmm.2020.4624 |
[1] | 陈鑫源, 吴成挺, 李瑞迪, 潘雪芹, 张耀丹, 陶俊宇, 林才志. 双术汤通过P53/SLC7A11/GPX4通路诱导胃癌细胞铁死亡[J]. 南方医科大学学报, 2025, 45(7): 1363-1371. |
[2] | 庞金龙, 赵新丽, 张振, 王豪杰, 周星琦, 杨玉梅, 李姗姗, 常小强, 李锋, 李娴. 皮肤黑色素瘤中MMRN2高表达促进肿瘤细胞的侵袭和迁移并与不良预后相关[J]. 南方医科大学学报, 2025, 45(7): 1479-1489. |
[3] | 王康, 李海宾, 余靖, 孟源, 张虹丽. ELFN1高表达是结肠癌的预后生物标志物并促进结肠癌细胞的增殖转移[J]. 南方医科大学学报, 2025, 45(7): 1543-1553. |
[4] | 杨毓甲, 杨丽芳, 吴雅玲, 段兆达, 于春泽, 吴春云, 于建云, 杨力. 大麻二酚经PERK-eIF2α-ATF4-CHOP通路减轻多重脑震荡大鼠的神经元内质网应激和凋亡[J]. 南方医科大学学报, 2025, 45(6): 1240-1250. |
[5] | 郭晓娟, 杜瑞娟, 陈丽平, 郭克磊, 周彪, 卞华, 韩立. WW结构域E3泛素连接酶1调控卵巢癌肿瘤微环境中的免疫浸润[J]. 南方医科大学学报, 2025, 45(5): 1063-1073. |
[6] | 高志, 吴傲, 胡仲翔, 孙培养. 类风湿性关节炎中氧化应激与免疫浸润的生物信息学分析[J]. 南方医科大学学报, 2025, 45(4): 862-870. |
[7] | 许怀文, 翁丽, 薛鸿. CXCL12可作为2型糖尿病合并慢性阻塞性肺疾病的潜在治疗靶点[J]. 南方医科大学学报, 2025, 45(1): 100-109. |
[8] | 王耀彬, 陈柳燕, 罗伊凌, 申继清, 周素芳. NUF2对泛癌的预后和免疫治疗效果的预测价值[J]. 南方医科大学学报, 2025, 45(1): 137-149. |
[9] | 叶梦楠, 武鸿美, 梅琰, 张庆玲. CREM在胃癌中高表达并与患者的不良预后相关[J]. 南方医科大学学报, 2024, 44(9): 1776-1782. |
[10] | 纪凯, 于冠宇, 周乐其, 张天帅, 凌潜龙, 满文江, 朱冰, 张卫. HNRNPA1基因在结直肠癌组织中高表达及其潜在的诊断和治疗价值[J]. 南方医科大学学报, 2024, 44(9): 1685-1695. |
[11] | 陈莉莉, 吴天宇, 张铭, 丁子夏, 张妍, 杨依清, 郑佳倩, 张小楠. 类风湿关节炎的潜在生物标志物及其免疫调控机制:基于GEO数据库[J]. 南方医科大学学报, 2024, 44(6): 1098-1108. |
[12] | 鲁玲君, 杨小迪, 张华平, 梁媛, 石秀兰, 周鑫. 重组日本血吸虫半胱氨酸蛋白酶抑制剂对急性肝损伤小鼠的保护作用及机制[J]. 南方医科大学学报, 2024, 44(6): 1126-1134. |
[13] | 裴蓓, 张艺, 魏思源, 梅语, 宋标, 董港, 温子昂, 李学军. 基于转录组学测序及生物信息学方法鉴定肠上皮化生的潜在致病基因[J]. 南方医科大学学报, 2024, 44(5): 941-949. |
[14] | 王沁智, 宋冰, 郝诗睿, 肖志远, 金连辉, 郑通, 柴芳. 基于生物信息学分析CCND2在甲状腺乳头状癌中的表达及其对免疫浸润的影响[J]. 南方医科大学学报, 2024, 44(5): 981-988. |
[15] | 梁一豪, 赖颖君, 袁燕文, 袁 炜, 张锡波, 张拔山, 卢志锋. 基于GEO数据库筛选胃癌差异表达基因及其功能和通路富集分析[J]. 南方医科大学学报, 2024, 44(3): 605-616. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||