南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (1): 137-149.doi: 10.12122/j.issn.1673-4254.2025.01.17
• • 上一篇
收稿日期:
2024-06-28
出版日期:
2025-01-20
发布日期:
2025-01-20
通讯作者:
周素芳
E-mail:1018655844@qq.com;zsf200000@163.com
作者简介:
王耀彬,在读硕士研究生,E-mail: 1018655844@qq.com
基金资助:
Yaobin WANG(), Liuyan CHEN, Yiling LUO, Jiqing SHEN, Sufang ZHOU(
)
Received:
2024-06-28
Online:
2025-01-20
Published:
2025-01-20
Contact:
Sufang ZHOU
E-mail:1018655844@qq.com;zsf200000@163.com
Supported by:
摘要:
目的 探讨NUF2表达水平与肿瘤预后的关系及在肿瘤微环境中的作用。 方法 综合利用人类蛋白质图谱(HPA)、癌症基因组图谱(TCGA)、基因型-组织表达计划(GTEx)、癌细胞系百科全书(CCLE)、TIMER的数据集,采用生物信息学方法挖掘NUF2的潜在致癌作用,包括剖析NUF2在各种类型肿瘤组织中的表达水平、预后价值及免疫价值;采用RT-qPCR、Western blotting、免疫组化(IHC)等实验检测NUF2在肝癌细胞系和肝癌患者癌组织及血液中的表达情况。利用基因本体论(GO)、基因组百科全书(KEGG)和基因集富集分析(GSEA)探索NUF2及相关基因的分子机制并在肝癌中构建了NUF2的竞争性内源RNA(ceRNA)网络。 结果 与正常组织相比,NUF2表达在27种肿瘤中上调并与多种类型肿瘤的临床分期相关(P<0.05)。在部分肿瘤中,NUF2的表达上调与肿瘤患者的不良预后(总体生存期、疾病特异性生存期、无病生存期和无进展生存期)相关(P<0.05)。NUF2表达水平与多种肿瘤的肿瘤突变负荷、微卫星不稳定、浸润免疫细胞(B细胞、髓样树突状细胞、中性粒细胞、CD4+T细胞)、免疫细胞maker基因(CCR7、CD163、CD19、CD4、CD79A、CD8A、CD8B、IRF5、ITGAX和MS4A4A)以及免疫检查点基因(CTLA4、HAVCR2、LAG3、PDCD1和PDCD1LG2)呈正相关(P<0.05)。RT-qPCR等实验结果显示NUF2在肝癌细胞系、肝癌患者癌组织和血液中表达上调(P<0.05),其中肝癌患者经手术治疗之后,使得血液中NUF2表达下调(P<0.05)。GO 和 KEGG 富集分析表明,NUF2相关基因与染色体分离、微管运动以及细胞周期相关(P<0.05)。GSEA分析提示,在肝癌中NUF2高表达与甘氨酸、丝氨酸和苏氨酸代谢以及调控神经活性配体受体相互作用有关(P<0.05)。 结论 NUF2在27种肿瘤中表达上调并与部分肿瘤的临床分期、不良预后有关。此外NUF2的表达与多种肿瘤的免疫细胞浸润密切相关,可能作为这些癌症免疫治疗效果的潜在预测因子。
王耀彬, 陈柳燕, 罗伊凌, 申继清, 周素芳. NUF2对泛癌的预后和免疫治疗效果的预测价值[J]. 南方医科大学学报, 2025, 45(1): 137-149.
Yaobin WANG, Liuyan CHEN, Yiling LUO, Jiqing SHEN, Sufang ZHOU. Predictive value of NUF2 for prognosis and immunotherapy responses in pan-cancer[J]. Journal of Southern Medical University, 2025, 45(1): 137-149.
Gene | Primer sequence 5'-3' |
---|---|
NUF2 | F: AGTTAAACGCCGCACACCAG |
R: CCCTCTTGCAGCACTATCGTT | |
ACTIN | F: CCAACCGCGAGAAGATGACC |
R: GAGTCCATCACGATGCCAGT |
表1 qRT-PCR检测基因表达的引物序列
Tab.1 Primer sequence for qRT-PCR
Gene | Primer sequence 5'-3' |
---|---|
NUF2 | F: AGTTAAACGCCGCACACCAG |
R: CCCTCTTGCAGCACTATCGTT | |
ACTIN | F: CCAACCGCGAGAAGATGACC |
R: GAGTCCATCACGATGCCAGT |
图1 分析NUF2在泛癌及不同临床分期的表达
Fig.1 Expression of NUF2 in pan-cancer and in different clinical stages. A: NUF2 mRNA expression levels in different human organs based on data from The Human Protein Atlas (www.proteinatlas.org). B: NUF2 expression in different cancers in TCGA and GTEx databases. C: NUF2 mRNA expressions in different cell lines based on CCLE database. D: Association between NUF2 expression and tumor stage. *P<0.05, **P<0.01, ***P<0.001.
图2 NUF2表达与患者总生存期的关系分析
Fig.2 Association of NUF2 expression with overall survival (OS) of cancer patients. A: Forest map of univariate Cox regression analysis of NUF2 in TCGA pan-cancer samples. B-K: Kaplan-Meier analysis of the association between NUF2 expression and OS.
图3 NUF2表达与患者无病生存期的关系分析
Fig.3 Association of NUF2 expression level with disease-free survival of cancer patients. A: Forest map of univariate Cox regression analysis of NUF2 in TCGA pan-cancer samples. B-H: Kaplan-Meier analysis of the association between NUF2 expression and DFS.
图4 NUF2表达与患者疾病特异性生存期的关系分析
Fig.4 Association of NUF2 expression with disease-specific survival (DSS) of cancer patients. A: Forest map of univariate Cox regression analysis of NUF2 in TCGA pan-cancer samples. B-K: Kaplan-Meier analysis of the association between NUF2 expression and DSS.
图5 NUF2表达与患者无进展生存期的关系分析
Fig.5 Association of NUF2 expression with progression-free survival (PFS) of cancer patients. A: Forest map of univariate Cox regression analysis of NUF2 in TCGA pan-cancer samples. B-N: Kaplan-Meier analysis of the association between NUF2 expression and PFS.
图6 NUF2表达与肿瘤突变负荷和微卫星不稳定性的关系分析
Fig.6 Association of NUF2 expression with tumor mutation burden (TMB) and microsatellite instability (MSI). A: TMB. B: MSI. *P<0.05, **P<0.01, ***P<0.001 by Spearman correlation test.
图7 NUF2与泛癌免疫细胞浸润和免疫相关基因的相关性分析
Fig.7 Correlation of NUF2 with pan-cancer immune cell infiltration and immune-related genes. A, B: Correlations of NUF2 expression with infiltration levels of various immune cells based on TIMER (A) and CIBERSORT (B) algorithms. C: Correlations of NUF2 with expressions of immune cell marker genes. D: Correlations of NUF2 with expressions of immune checkpoints-related genes. Statistical correlations were assessed using Spearman correlation test.
图8 NUF2在肝癌细胞系和患者癌组织及血液中的表达
Fig.8 NUF2 expression in HCC cell lines and tissue and blood samples from HCC patients. A, B: Levels of NUF2 in LO2 and HepG2 cells detected by RT-qPCR and Western blotting. C: Expression of NUF2 in HCC tissues detected by immunohistochemistry (n=10). D: Expression of NUF2 in HCC patients (n=29) and healthy individuals (n=15). E: Expression of NUF2 before and after surgical treatment in patients with HCC (n=14). Wilcoxon test was used to examine the significance of variations between two sets of data. *P<0.05, **P<0.01, ****P<0.0001.
图9 NUF2的分子功能及在肝癌中ceRNA调控模式预测
Fig.9 Molecular function of NUF2 and prediction of ceRNA regulatory patterns in HCC. A: Protein-protein interaction network of NUF2 based on the STRING database. B: GO and KEGG functional enrichment of NUF2-related genes. C: KEGG pathway analysis of NUF2 in GSEA in LIHC. D: miRNAs targeting NUF2 in HCC. E: Correlation analysis between hsa-miR-22-3p expression and NUF2 expression. F: Potential ceRNA regulatory axis of NUF2 in HCC. The red nodes indicate NUF2, the green nodes indicate miRNA, and the purple nodes indicate lncRNA. Statistical correlations were assessed using Spearman correlation test.
1 | Bray F, Laversanne M, Weiderpass E, et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide[J]. Cancer, 2021, 127(16): 3029-30. |
2 | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-63. |
3 | Srivastava S, Hanash S. Pan-cancer early detection: hype or hope?[J]. Cancer Cell, 2020, 38(1): 23-4. |
4 | Law HKW, Yim HCH. Early diagnosis of cancer using circulating microbial DNA[J]. Cell Rep Med, 2024, 5(4): 101502. |
5 | Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity[J]. CA Cancer J Clin, 2020, 70(2): 86-104. |
6 | Singh AK, McGuirk JP. CAR T cells: continuation in a revolution of immunotherapy[J]. Lancet Oncol, 2020, 21(3): e168-e178. |
7 | Hijazi A, Antoniotti C, Cremolini C, et al. Light on life: immunoscore immune-checkpoint, a predictor of immunotherapy response[J]. Oncoimmunology, 2023, 12(1): 2243169. |
8 | Foley EA, Kapoor TM. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore[J]. Nat Rev Mol Cell Biol, 2013, 14(1): 25-37. |
9 | Cheerambathur DK, Gassmann R, Cook B, et al. Crosstalk between microtubule attachment complexes ensures accurate chromosome segregation[J]. Science, 2013, 342(6163): 1239-42. |
10 | Lin JT, Chen XL, Yu HJ, et al. NUF2 drives clear cell renal cell carcinoma by activating HMGA2 transcription through KDM2A-mediated H3K36me2 demethylation[J]. Int J Biol Sci, 2022, 18(9): 3621-35. |
11 | Leng RB, Meng YF, Sun XM, et al. NUF2 overexpression contributes to epithelial ovarian cancer progression via ERBB3-mediated PI3K-AKT and MAPK signaling axes[J]. Front Oncol, 2022, 12: 1057198. |
12 | Shan JJ, Jiang WJ, Chang J, et al. NUF2 drives cholangiocarcinoma progression and migration via inhibiting autophagic degradation of TFR1[J]. Int J Biol Sci, 2023, 19(5): 1336-51. |
13 | Li TW, Fu JX, Zeng ZX, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1): W509-W514. |
14 | Lv SM, Xu WJ, Zhang YY, et al. NUF2 as an anticancer therapeutic target and prognostic factor in breast cancer[J]. Int J Oncol, 2020, 57(6): 1358-67. |
15 | Deng Y, Li JP, Zhang YJ, et al. NUF2 promotes breast cancer development as a new tumor stem cell indicator[J]. Int J Mol Sci, 2023, 24(4): 4226. |
16 | Ren M, Zhao HY, Gao Y, et al. NUF2 promotes tumorigenesis by interacting with HNRNPA2B1 via PI3K/AKT/mTOR pathway in ovarian cancer[J]. J Ovarian Res, 2023, 16(1): 17. |
17 | Zhu XW, Zou YM, Wu T, et al. ANP32E contributes to gastric cancer progression via NUF2 upregulation[J]. Mol Med Rep, 2022, 26(3): 275. |
18 | Jiang F, Huang XL, Yang X, et al. NUF2 expression promotes lung adenocarcinoma progression and is associated with poor prognosis[J]. Front Oncol, 2022, 12: 795971. |
19 | Fu HL, Shao L. Silencing of NUF2 inhibits proliferation of human osteosarcoma Saos-2 cells[J]. Eur Rev Med Pharmacol Sci, 2016, 20(6): 1071-9. |
20 | Huang SK, Qian JX, Yuan BQ, et al. SiRNA-mediated knockdown against NUF2 suppresses tumor growth and induces cell apoptosis in human glioma cells[J]. Cell Mol Biol, 2014, 60(4): 30-6. |
21 | Liu YW, Wang YM, Wang JF, et al. NUF2 regulated the progression of hepatocellular carcinoma through modulating the PI3K/AKT pathway via stabilizing ERBB3[J]. Transl Oncol, 2024, 44: 101933. |
22 | Sugimasa H, Taniue K, Kurimoto A, et al. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells[J]. Biochem Biophys Res Commun, 2015, 459(1): 29-35. |
23 | Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science, 2006, 313(5795): 1960-4. |
24 | Fridman WH, Pagès F, Sautès-Fridman C, et al. The immune contexture in human tumours: impact on clinical outcome[J]. Nat Rev Cancer, 2012, 12(4): 298-306. |
25 | Remark R, Merghoub T, Grabe N, et al. In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide[J]. Sci Immunol, 2016, 1(1): aaf6925. |
26 | Cao YY, Jiao NL, Sun TT, et al. CXCL11 correlates with antitumor immunity and an improved prognosis in colon cancer[J]. Front Cell Dev Biol, 2021, 9: 646252. |
27 | Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types[J]. Nat Genet, 2019, 51(2): 202-6. |
28 | Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230): 124-8. |
29 | Chabanon RM, Pedrero M, Lefebvre C, et al. Mutational landscape and sensitivity to immune checkpoint blockers[J]. Clin Cancer Res, 2016, 22(17): 4309-21. |
30 | Chan TA, Wolchok JD, Snyder A. Genetic basis for clinical response to CTLA-4 blockade in melanoma[J]. N Engl J Med, 2015, 373(20): 1984. |
31 | Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients[J]. Nature, 2014, 515(7528): 563-7. |
32 | Pawłowska A, Skiba W, Suszczyk D, et al. The dual blockade of the TIGIT and PD-1/PD-L1 pathway as a new hope for ovarian cancer patients[J]. Cancers, 2022, 14(23): 5757. |
33 | Ravi A, Hellmann MD, Arniella MB, et al. Genomic and transcriptomic analysis of checkpoint blockade response in advanced non-small cell lung cancer[J]. Nat Genet, 2023, 55(5): 807-19. |
34 | Hao DP, Liu J, Chen M, et al. Immunogenomic analyses of advanced serous ovarian cancer reveal immune score is a strong prognostic factor and an indicator of chemosensitivity[J]. Clin Cancer Res, 2018, 24(15): 3560-71. |
35 | Qu JJ, Li M, Zhong W, et al. Competing endogenous RNA in cancer: a new pattern of gene expression regulation[J]. Int J Clin Exp Med, 2015, 8(10): 17110-6. |
[1] | 陈晓睿, 魏青政, 张宗亮, 原江水, 宋卫青. 过表达带电多泡体蛋白2B基因抑制肾透明细胞癌细胞的增殖[J]. 南方医科大学学报, 2025, 45(1): 126-136. |
[2] | 陈孝华, 鲁辉, 王子良, 王炼, 夏勇生, 耿志军, 张小凤, 宋雪, 王月月, 李静, 胡建国, 左芦根. ABI2在胃癌进展和预后中的作用及其调控机制[J]. 南方医科大学学报, 2024, 44(9): 1653-1661. |
[3] | 叶梦楠, 武鸿美, 梅琰, 张庆玲. CREM在胃癌中高表达并与患者的不良预后相关[J]. 南方医科大学学报, 2024, 44(9): 1776-1782. |
[4] | 纪凯, 于冠宇, 周乐其, 张天帅, 凌潜龙, 满文江, 朱冰, 张卫. HNRNPA1基因在结直肠癌组织中高表达及其潜在的诊断和治疗价值[J]. 南方医科大学学报, 2024, 44(9): 1685-1695. |
[5] | 刘鹏程, 娄丽娟, 刘霞, 王建, 姜颖. M2巨噬细胞特征基因风险评分能准确预测HBV相关肝细胞癌患者的预后[J]. 南方医科大学学报, 2024, 44(5): 827-840. |
[6] | 周伟, 聂军, 胡佳, 蒋艺枝, 张大发. 内质网应激相关基因在主动脉夹层疾病中的差异性表达及与免疫浸润的相关性[J]. 南方医科大学学报, 2024, 44(5): 859-866. |
[7] | 杨晶晶, 殷丽霞, 段婷, 牛民主, 何震东, 陈心蕊, 张小凤, 李静, 耿志军, 左芦根. 胃癌组织中高表达ATP5A1与患者术后的不良预后和肿瘤细胞的糖代谢有关[J]. 南方医科大学学报, 2024, 44(5): 974-980. |
[8] | 王沁智, 宋冰, 郝诗睿, 肖志远, 金连辉, 郑通, 柴芳. 基于生物信息学分析CCND2在甲状腺乳头状癌中的表达及其对免疫浸润的影响[J]. 南方医科大学学报, 2024, 44(5): 981-988. |
[9] | 高志强, 林 洁, 洪 鹏, 胡再宏, 董军君, 石秦林, 田小毛, 刘 丰, 魏光辉. 基于高通量 RNA 测序分析 Wilms 瘤中关键基因对预后及免疫应答的影响[J]. 南方医科大学学报, 2024, 44(4): 727-738. |
[10] | 沈梦迪, 赵 娜, 邓晓晶, 邓 敏. COX6B2在胃癌组织中高表达并影响患者的远期预后:基于抑制p53信号调控胃癌细胞的增殖及细胞周期[J]. 南方医科大学学报, 2024, 44(2): 289-297. |
[11] | 张 诺, 张 震, 张雨路, 宋 雪, 张小凤, 李 静, 左芦根, 胡建国. PCID2在胃癌组织中高表达并通过调控细胞周期进程和增殖影响患者预后[J]. 南方医科大学学报, 2024, 44(2): 324-332. |
[12] | 张文静, 张 诺, 杨 子, 张小凤, 孙奥飞, 王 炼, 宋 雪, 耿志军, 李 静, 胡建国. BZW1 高表达促进胃癌细胞的侵袭和转移:基于调控Wnt//β-catenin通路和促进上皮间质转化[J]. 南方医科大学学报, 2024, 44(2): 354-362. |
[13] | 张富星, 刘国庆, 董锐, 高磊, 陆伟晨, 高连霞, 赵忠扩, 陆飞, 刘牧林. 高表达CRTAC1通过调控PI3K信号通路促进胃癌细胞增殖、迁移及免疫浸润[J]. 南方医科大学学报, 2024, 44(12): 2421-2433. |
[14] | 谭茹雪, 包晓樟, 韩亮, 李朝晖, 田男. 基于HOXA9 DNA甲基化的两位点联合预测模型可用于脑膜瘤进展风险的早期筛查[J]. 南方医科大学学报, 2024, 44(11): 2110-2120. |
[15] | 张震, 鲁辉, 陈孝华, 王炼, 王子良, 王月月, 葛思堂, 左芦根. CEP192过表达可作为胃癌患者不良预后的生物标志物并通过调控G2/M期关键蛋白的表达影响肿瘤细胞恶性增殖[J]. 南方医科大学学报, 2024, 44(11): 2137-2145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||