南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (5): 827-840.doi: 10.12122/j.issn.1673-4254.2024.05.04
收稿日期:
2024-03-10
出版日期:
2024-05-20
发布日期:
2024-06-04
通讯作者:
姜颖
E-mail:pc18782995020@163.com;jiangying@ncpsb.org.cn
作者简介:
刘鹏程,在读硕士研究生,E-mail: pc18782995020@163.com
基金资助:
Pengcheng LIU(), Lijuan LOU, Xia LIU, Jian WANG, Ying JIANG(
)
Received:
2024-03-10
Online:
2024-05-20
Published:
2024-06-04
Contact:
Ying JIANG
E-mail:pc18782995020@163.com;jiangying@ncpsb.org.cn
Supported by:
摘要:
目的 探讨在乙型肝炎病毒(HBV)相关肝细胞癌(HCC)中M2巨噬细胞特征基因(MRG)对患者预后的评估价值及潜在的分子机制。 方法 从TCGA数据库获取73例HBV相关肝HCC患者的转录组数据,通过WGCNA识别M2巨噬细胞相关基因模块,利用LASSO鉴定出关键MRG并构建风险评分,并在外部数据集中验证风险评分的预测性能。应用CIBERSORT和R.pRRophetic分析风险评分与免疫细胞浸润、药物敏感性的关系。通过GSVA和GSEA对高风险组和低风险组的差异基因进行通路富集分析。R.Seurat验证在HCC中表达MRG的细胞类型,并通过R.Cellchat分析细胞互作强度,找到与HCC进展相关的重要细胞类型。流式细胞术检测肝癌条件培养基诱导THP-1向M2样极化,RT-qPCR验证MRG在HBV阳性的肝癌细胞系和M2巨噬细胞中表达。 结果 M2巨噬细胞高浸润状态与患者不良预后显著相关(P=0.025)。高风险组的总生存期(OS)均显著低于低风险组(训练集P=0.021,测试集P=0.046)。高风险组中M2巨噬细胞显著富集(P=0.03),低风险组中幼稚B细胞显著富集(P=0.049)。药物BI.2536对高风险组更有效(P=0.025),AG.014699(P=0.044)、AKT.inhibitor.VIII(P=0.041)、AZD.0530(P=0.0033)、AZD7762(P=0.0051)和BMS.708163(P=0.015)对低风险组更有效。通路富集分析结果表明,增殖相关通路和代谢相关通路在高风险组中富集。单核细胞在高风险组HCC进展的细胞互作中最为活跃。VTN在PLC/PRF/5中的表达显著上调(P<0.0001),GCLC、PARVB、TRIM27和GMPR在M2样THP-1中的表达显著上调(P=0.0037、P=0.0015、P=0.0071、P=0.0004)。 结论 MRG风险评分能准确预测HBV相关HCC患者的预后,揭示其肿瘤微环境的差异,为HCC患者的精准治疗提供了指导。
刘鹏程, 娄丽娟, 刘霞, 王建, 姜颖. M2巨噬细胞特征基因风险评分能准确预测HBV相关肝细胞癌患者的预后[J]. 南方医科大学学报, 2024, 44(5): 827-840.
Pengcheng LIU, Lijuan LOU, Xia LIU, Jian WANG, Ying JIANG. A risk scoring model based on M2 macrophage-related genes for predicting prognosis of HBV-related hepatocellular carcinoma[J]. Journal of Southern Medical University, 2024, 44(5): 827-840.
Item | Overall | GSE10140 | TCGA-LIHC |
---|---|---|---|
n | 155 | 82 | 73 |
Futime (median [IQR]) | 1613.00 [630.50, 2871.75] | 2854.00 [1368.00, 3662.50] | 682.50 [437.00, 1632.50] |
Fustat =1 [n (%)] | 48 (30.9) | 32 (39.0) | 16 (21.9) |
EGF [n (%)] | |||
High | 9 (5.8) | 9 (11.0) | 0 (0.0) |
Low | 73 (47.1) | 73 (89.0) | 0 (0.0) |
NA | 73 (47.1) | 0 (0.0) | 73 (100.0) |
Age (year, median [IQR]) | 52.00 [46.00, 62.75] | NA [NA, NA] | 52.00 [46.00, 62.75] |
Gender [n (%)] | |||
Female | 15 (9.7) | 0 (0.0) | 15 (20.5) |
Male | 58 (37.4) | 0 (0.0) | 58 (79.5) |
NA | 82 (52.9) | 82 (100.0) | 0 (0.0) |
Grade (%) | |||
G1 | 6 (3.8) | 0 (0.0) | 6 (8.2) |
G2 | 27 (17.4) | 0 (0.0) | 27 (37.0) |
G3 | 34 (21.9) | 0 (0.0) | 34 (46.6) |
G4 | 6 (3.9) | 0 (0.0) | 6 (8.2) |
NA | 82 (52.9) | 82 (100.0) | 0 (0.0) |
Stage [n (%)] | |||
Stage I | 49 (31.6) | 0 (0.0) | 49 (67.1) |
Stage II | 15 (9.8) | 0 (0.0) | 15 (20.5) |
Stage III | 5 (3.2) | 0 (0.0) | 5 (6.8) |
Stage IV | 1 (0.6) | 0 (0.0) | 1 (1.4) |
Unknow | 3 (1.8) | 0 (0.0) | 3 (4.2) |
NA | 82 (52.9) | 82 (100.0) | 0 |
T stage [n (%)] | |||
T1 | 52(33.5) | 0 (0.0) | 52 (71.3) |
T2 | 15 (9.8) | 0 (0.0) | 15 (20.5) |
T3 | 5 (3.2) | 0 (0.0) | 5 (6.8) |
T4 | 1 (0.6) | 0 (0.0) | 1 (1.4) |
NA | 82 (52.9) | 82 (100.0) | 0 (0.0) |
Metastasis [n (%)] | |||
M0 | 70 (45.3) | 0 (0.0) | 70 (95.8) |
M1 | 2 (1.2) | 0 (0.0) | 2 (2.8) |
MX | 1 (0.6) | 0 (0.0) | 1 (1.4) |
NA | 82 (52.9) | 82 (100.0) | 0 (0.0) |
Nodes [n (%)] | |||
N0 | 70 (45.3) | 0 (0.0) | 70 (95.8) |
NX | 3 (1.8) | 0 (0.0) | 3 (4.2) |
NA | 82 (52.9) | 82 (100.0) | 0 (0.0) |
表1 TCGA数据集和GSE10140数据集患者的基线资料
Tab.1 Baseline characteristics of HCC patients in TCGA dataset and GEO dataset
Item | Overall | GSE10140 | TCGA-LIHC |
---|---|---|---|
n | 155 | 82 | 73 |
Futime (median [IQR]) | 1613.00 [630.50, 2871.75] | 2854.00 [1368.00, 3662.50] | 682.50 [437.00, 1632.50] |
Fustat =1 [n (%)] | 48 (30.9) | 32 (39.0) | 16 (21.9) |
EGF [n (%)] | |||
High | 9 (5.8) | 9 (11.0) | 0 (0.0) |
Low | 73 (47.1) | 73 (89.0) | 0 (0.0) |
NA | 73 (47.1) | 0 (0.0) | 73 (100.0) |
Age (year, median [IQR]) | 52.00 [46.00, 62.75] | NA [NA, NA] | 52.00 [46.00, 62.75] |
Gender [n (%)] | |||
Female | 15 (9.7) | 0 (0.0) | 15 (20.5) |
Male | 58 (37.4) | 0 (0.0) | 58 (79.5) |
NA | 82 (52.9) | 82 (100.0) | 0 (0.0) |
Grade (%) | |||
G1 | 6 (3.8) | 0 (0.0) | 6 (8.2) |
G2 | 27 (17.4) | 0 (0.0) | 27 (37.0) |
G3 | 34 (21.9) | 0 (0.0) | 34 (46.6) |
G4 | 6 (3.9) | 0 (0.0) | 6 (8.2) |
NA | 82 (52.9) | 82 (100.0) | 0 (0.0) |
Stage [n (%)] | |||
Stage I | 49 (31.6) | 0 (0.0) | 49 (67.1) |
Stage II | 15 (9.8) | 0 (0.0) | 15 (20.5) |
Stage III | 5 (3.2) | 0 (0.0) | 5 (6.8) |
Stage IV | 1 (0.6) | 0 (0.0) | 1 (1.4) |
Unknow | 3 (1.8) | 0 (0.0) | 3 (4.2) |
NA | 82 (52.9) | 82 (100.0) | 0 |
T stage [n (%)] | |||
T1 | 52(33.5) | 0 (0.0) | 52 (71.3) |
T2 | 15 (9.8) | 0 (0.0) | 15 (20.5) |
T3 | 5 (3.2) | 0 (0.0) | 5 (6.8) |
T4 | 1 (0.6) | 0 (0.0) | 1 (1.4) |
NA | 82 (52.9) | 82 (100.0) | 0 (0.0) |
Metastasis [n (%)] | |||
M0 | 70 (45.3) | 0 (0.0) | 70 (95.8) |
M1 | 2 (1.2) | 0 (0.0) | 2 (2.8) |
MX | 1 (0.6) | 0 (0.0) | 1 (1.4) |
NA | 82 (52.9) | 82 (100.0) | 0 (0.0) |
Nodes [n (%)] | |||
N0 | 70 (45.3) | 0 (0.0) | 70 (95.8) |
NX | 3 (1.8) | 0 (0.0) | 3 (4.2) |
NA | 82 (52.9) | 82 (100.0) | 0 (0.0) |
MRG | Forword primer (5'-3') | Reverse primer (5'-3') |
---|---|---|
GAPDH | AGATCCCTCCAAAATCAAGTGG | GGCAGAGATGATGACCCTTTT |
VTN | AAGCCCCAAGTGACTCGC | TTTTCTCCTCGCCATCGTCA |
GCLC | ACTTCATTTCCCAGTACCTTAACA | GCAGCACTCAAAGCCATAACA |
GMPR | GGGCCACATCATCTCTGATGGA | TCAGTCCCCCGAGAATATCCAG |
PARVB | GGTTCACTTCTCCCTGGCTC | CGCTCCTCGTTCTCCTCAAG |
TRIM27 | AGCATGAGTATCGCCTCCTG | CTGATTCTTTCAGCCCTGCTC |
表2 MRG基因的RT-qPCR引物序列
Tab.2 RT-qPCR primer sequences
MRG | Forword primer (5'-3') | Reverse primer (5'-3') |
---|---|---|
GAPDH | AGATCCCTCCAAAATCAAGTGG | GGCAGAGATGATGACCCTTTT |
VTN | AAGCCCCAAGTGACTCGC | TTTTCTCCTCGCCATCGTCA |
GCLC | ACTTCATTTCCCAGTACCTTAACA | GCAGCACTCAAAGCCATAACA |
GMPR | GGGCCACATCATCTCTGATGGA | TCAGTCCCCCGAGAATATCCAG |
PARVB | GGTTCACTTCTCCCTGGCTC | CGCTCCTCGTTCTCCTCAAG |
TRIM27 | AGCATGAGTATCGCCTCCTG | CTGATTCTTTCAGCCCTGCTC |
图1 M2巨噬细胞高浸润的HCC患者预后不良
Fig.1 HCC patients with high M2 macrophage infiltration level have poor prognosis. A: Proportion of immune cells in HBV-related HCC patients. B-D: Prognosis of patients stratified by the number of M0 macrophage (B), M1 macrophage (C) and M2 macrophage (D).
图2 风险评分的构建
Fig.2 Construction of prognostic risk scoring model. A-C: Identification of M2 macrophage-related gene (MRG) modules by WGCNA. D-F: Five hub MRGs (VTN, GCLC, PARVB, TRIM27 and GMPR) identified by LASSO regression analysis for constructing the risk scoring model.
图3 风险评分的验证
Fig.3 Validation of the risk scoring model. A-D: Different patterns of survival status and survival time between the high-risk group (A, B) and low-risk group (C, D). E, F: Validation of the MRG prognostic model in the training dataset (E) and testing dataset (F). G, H: ROC curves of the risk score for predicting overall survival (OS) in the training dataset (G) and testing dataset (H). I: Validation of the MRG prognostic model using the external dataset.
图4 列线图的构建
Fig.4 Construction of the nomogram. A: Nomogram of the risk scores and clinical characteristics. B: Calibration curves for evaluating OS predictions at 3 and 5 years. C, D: ROC and DCA curves for determining the accuracy of the nomogram for OS at 1, 3 and 5 years, respectively. E-G: Correlation of the risk scores with clinical stages. H, I: Univariate analysis and multivariate analysis for validating the independent prognostic value of the risk scores.
图5 风险评分的临床预测价值
Fig.5 Clinical predictive value of the risk scoring model. A, B: Infiltrating level of immune cells in the high- and low-risk groups. C: Sensitivity of anti-tumor immunotherapy in the high- and low-risk groups. D: IC50 values of common chemotherapy drugs.
图6 风险评分相关的功能富集分析
Fig.6 Functional enrichment analysis of signaling pathways related to the risk scoring model. A: GSVA in the high- and low-risk groups. B: GSEA in the high- and low-risk groups. C: Molecular interaction networks between the pathways.
图7 MRG与HCC致病基因的关系
Fig.7 Relationship between the 5 hub MRGs and HCC pathogenic genes. A: Relationship between the hub genes and the top 20 HCC pathogenic genes. B: A bubble plot illustrating the Pearson correlation between 5 hub MRGs (VTN, GCLC, PARVB, TRIM27 and GMPR) and the top 20 HCC pathogenic genes.
图8 表达MRG的细胞类型
Fig.8 Expression of MRGs in different cell types. A-C: 5 hub MRGs are mainly expressed in hepatocytes, monocyte, T cells and NK cell. D, E: Cell chat intensity in high- and low-risk groups. F: UMAP projection showing the immune landscape of HCC, colored by cluster. G: Expressions of GCLC, PARVB, GMPR and TRIM27 in HCC immune microenvironment.
图9 MRG在肝癌细胞和巨噬细胞中的表达
Fig.9 Expressions of MRGs in HCC cell lines and macrophages. A: Expression of CD163 and CD206 on THP-1 cells detected by flow cytometry. B-F: Expression of MRGs in PLC/PRF/5 and HCM-THP-1 cells. **P<0.01, ***P<0.001, ****P<0.0001.
1 | Craig AJ, von Felden J, Garcia-Lezana T, et al. Tumour evolution in hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(3): 139-52. DOI: 10.1038/s41575-019-0229-4 |
2 | Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma [J]. Lancet, 2022, 400(10360): 1345-62. DOI: 10.1016/s0140-6736(22)01200-4 |
3 | Koga H, Iwamoto H, Suzuki H, et al. Clinical practice guidelines and real-life practice in hepatocellular carcinoma: a Japanese perspective[J]. Clin Mol Hepatol, 2023, 29(2): 242-51. DOI: 10.3350/cmh.2023.0102 |
4 | Bruix J, Sherman M, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update[J]. Hepatology, 2011, 53(3): 1020-2. DOI: 10.1002/hep.24199 |
5 | Prospective validation of the CLIP score: a new prognostic system for patients with cirrhosis and hepatocellular carcinoma[J]. Hepatology, 2000, 31(4): 840-5. DOI: 10.1053/he.2000.5628 |
6 | Chevret S, Trinchet JC, Mathieu D, et al. A new prognostic classification for predicting survival in patients with hepatocellular carcinoma. Groupe d’Etude et de Traitement du Carcinome Hépatocellulaire[J]. J Hepatol, 1999, 31(1): 133-41. DOI: 10.1016/s0168-8278(99)80173-1 |
7 | Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification[J]. Semin Liver Dis, 1999, 19(3): 329-38. DOI: 10.1055/s-2007-1007122 |
8 | Yau T, Tang VYF, Yao TJ, et al. Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma[J]. Gastroenterology, 2014, 146(7): 1691-700.e3. DOI: 10.1053/j.gastro.2014.02.032 |
9 | Primack A, Vogel CL, Kyalwazi SK, et al. A staging system for hepatocellular carcinoma: prognostic factors in Ugandan patients[J]. Cancer, 1975, 35(5): 1357-64. DOI: 10.1002/1097-0142(197505)35:5<1357::aid-cncr2820350518>3.0.co;2-8 |
10 | Kamel HFM, Al-Amodi HSAB. Exploitation of gene expression and cancer biomarkers in paving the path to era of personalized medicine[J]. Genomics Proteomics Bioinformatics, 2017, 15(4): 220-35. DOI: 10.1016/j.gpb.2016.11.005 |
11 | Ahluwalia P, Kolhe R, Gahlay GK. The clinical relevance of gene expression based prognostic signatures in colorectal cancer[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188513. DOI: 10.1016/j.bbcan.2021.188513 |
12 | Ye ZM, Zou SM, Niu ZY, et al. A novel risk model based on lipid metabolism-associated genes predicts prognosis and indicates immune microenvironment in breast cancer[J]. Front Cell Dev Biol, 2021, 9: 691676. DOI: 10.3389/fcell.2021.691676 |
13 | Bussard KM, Mutkus L, Stumpf K, et al. Tumor-associated stromal cells as key contributors to the tumor microenvironment[J]. Breast Cancer Res, 2016, 18(1): 84. DOI: 10.1186/s13058-016-0740-2 |
14 | Jensen C, Nissen NI, Von Arenstorff CS, et al. Serological assessment of collagen fragments and tumor fibrosis may guide immune checkpoint inhibitor therapy[J]. J Exp Clin Cancer Res, 2021, 40(1): 326. DOI: 10.1186/s13046-021-02133-z |
15 | de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. DOI: 10.1016/j.ccell.2023.02.016 |
16 | Sherman MH, Beatty GL. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance[J]. Annu Rev Pathol, 2023, 18: 123-48. DOI: 10.1146/annurev-pathmechdis-031621-024600 |
17 | Liu YD, Li CF, Lu YP, et al. Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer[J]. Front Immunol, 2022, 13: 1016817. DOI: 10.3389/fimmu.2022.1016817 |
18 | Donne R, Lujambio A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma[J]. Hepatology, 2023, 77(5): 1773-96. DOI: 10.1002/hep.32740 |
19 | Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21(3): 309-22. DOI: 10.1016/j.ccr.2012.02.022 |
20 | Zhou DX, Luan JJ, Huang C, et al. Tumor-associated macrophages in hepatocellular carcinoma: friend or foe[J]? Gut Liver, 2021, 15(4): 500-16. DOI: 10.5009/gnl20223 |
21 | Pan YY, Yu YD, Wang XJ, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084. DOI: 10.3389/fimmu.2020.583084 |
22 | Zhang QM, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma[J]. Cell, 2019, 179(4): 829-45.e20. DOI: 10.1016/j.cell.2019.10.003 |
23 | Yeung OWH, Lo CM, Ling CC, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma[J]. J Hepatol, 2015, 62(3): 607-16. DOI: 10.1016/j.jhep.2014.10.029 |
24 | Nosaka T, Murata Y, Takahashi K, et al. Hepatocellular carcinoma progression promoted by 5-lipoxygenase activity in CD163+ tumor-associated macrophages[J]. Biomed Pharmacother, 2023, 162: 114592. DOI: 10.1016/j.biopha.2023.114592 |
25 | Song HQ, Wang XX, Zhang C, et al. Construction of an M2 macrophage-related prognostic model in hepatocellular carcinoma[J]. Front Oncol, 2023, 13: 1170775. DOI: 10.3389/fonc.2023.1170775 |
26 | Chen BB, Khodadoust MS, Liu CL, et al. Profiling tumor infiltrating immune cells with CIBERSORT[J]. Methods Mol Biol, 2018, 1711: 243-59. DOI: 10.1007/978-1-4939-7493-1_12 |
27 | Shin SW, Ahn KS, Kim SW, et al. Liver resection versus local ablation therapies for hepatocellular carcinoma within the Milan criteria: a systematic review and meta-analysis[J]. Ann Surg, 2021, 273(4): 656-66. DOI: 10.1097/sla.0000000000004350 |
28 | Jiang P, Gu SQ, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018, 24(10): 1550-8. DOI: 10.1038/s41591-018-0136-1 |
29 | Sun JL, Zhou CH, Ma QN, et al. High GCLC level in tumor tissues is associated with poor prognosis of hepatocellular carcinoma after curative resection[J]. J Cancer, 2019, 10(15): 3333-43. DOI: 10.7150/jca.29769 |
30 | Bianchi-Smiraglia A, Bagati A, Fink EE, et al. Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools[J]. Oncogene, 2017, 36(1): 84-96. DOI: 10.1038/onc.2016.178 |
31 | Ng L, Tung-Ping Poon R, Yau S, et al. Suppression of actopaxin impairs hepatocellular carcinoma metastasis through modulation of cell migration and invasion[J]. Hepatology, 2013, 58(2): 667-79. DOI: 10.1002/hep.26396 |
32 | Wang HC, Zhang Y, Yan L, et al. Analysis of TRIM27 prognosis value and immune infiltrates in hepatocellular carcinoma[J]. Int J Immunopathol Pharmacol, 2022, 36: 3946320221132986. DOI: 10.1177/03946320221132986 |
33 | Casanova-Acebes M, Dalla E, Leader AM, et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells[J]. Nature, 2021, 595(7868): 578-84. DOI: 10.1038/s41586-021-03651-8 |
34 | Zhang L, Li ZY, Skrzypczynska KM, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer[J]. Cell, 2020, 181(2): 442-59.e29. DOI: 10.1016/j.cell.2020.03.048 |
35 | Zheng LT, Qin SS, Si W, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells[J]. Science, 2021, 374(6574): abe6474. DOI: 10.1126/science.abe6474 |
36 | Liu CL, Yang MX, Zhang DZ, et al. Clinical cancer immunotherapy: current progress and prospects[J]. Front Immunol, 2022, 13: 961805. DOI: 10.3389/fimmu.2022.961805 |
37 | Liu Y, Xun ZZ, Ma K, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy[J]. J Hepatol, 2023, 78(4): 770-82. DOI: 10.1016/j.jhep.2023.01.011 |
38 | Wei CY, Zhu MX, Zhang PF, et al. PKCα/ZFP64/CSF1 axis resets the tumor microenvironment and fuels anti-PD1 resistance in hepatocellular carcinoma[J]. J Hepatol, 2022, 77(1): 163-76. DOI: 10.1016/j.jhep.2022.02.019 |
39 | Yang Y, Ye YC, Chen Y, et al. Crosstalk between hepatic tumor cells and macrophages via Wnt/β‑catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors[J]. Cell Death Dis, 2018, 9(8): 793. DOI: 10.1038/s41419-018-0818-0 |
40 | Lian GH, Chen SJ, Ouyang M, et al. Colon cancer cell secretes EGF to promote M2 polarization of TAM through EGFR/PI3K/AKT/mTOR pathway[J]. Technol Cancer Res Treat, 2019, 18: 1533033819849068. DOI: 10.1177/1533033819849068 |
[1] | 高志强, 林 洁, 洪 鹏, 胡再宏, 董军君, 石秦林, 田小毛, 刘 丰, 魏光辉. 基于高通量 RNA 测序分析 Wilms 瘤中关键基因对预后及免疫应答的影响[J]. 南方医科大学学报, 2024, 44(4): 727-738. |
[2] | 钟伟雄, 梁芳蓉, 杨蕊梦, 甄 鑫. 基于多期动态增强CT影像组学特征和多分类器分层融合模型预测肝细胞癌的微血管侵犯[J]. 南方医科大学学报, 2024, 44(2): 260-269. |
[3] | 朱 权, 黄柏胜, 位磊艳, 罗奇志. 过表达LncRNA MEG3通过促进铁死亡增强肝癌细胞对顺铂的化疗敏感性[J]. 南方医科大学学报, 2024, 44(1): 17-24. |
[4] | 曹丹萍, 蔡 娟, 李艳娜, 董润雨, 王智雄, 左学良. TMEM64在肝癌组织中高表达并促进肝癌细胞的增殖和侵袭[J]. 南方医科大学学报, 2023, 43(8): 1345-1355. |
[5] | 兰 玉, 王凯风, 蓝智贤, 周何琪, 孙 剑. 脱醇红酒抑制肝细胞癌的发生和发展:基于诱导细胞周期的阻滞和凋亡[J]. 南方医科大学学报, 2023, 43(8): 1297-1305. |
[6] | 巩 高, 曹 石, 肖 慧, 方威扬, 阙与清, 刘子蔚, 陈超敏. 深度注意力机制结合临床特征预测肝细胞癌微血管浸润[J]. 南方医科大学学报, 2023, 43(5): 839-851. |
[7] | 苏莉莉, 梁晚晴, 吕振宇, 韩 啸. PLXNA1在肝癌中高表达并影响患者的生存预后及其免疫微环境[J]. 南方医科大学学报, 2023, 43(11): 1909-1918. |
[8] | 张 铃, 赵春雨, 许瑶瑶, 陈炎森, 蔡志雄, 林浩伟, 蔡巧燕. 环状RNA hsa_circ_0006834可作为肝细胞癌患者预后的潜在生物标志物[J]. 南方医科大学学报, 2023, 43(11): 1850-1856. |
[9] | 林 杰, 区活辉, 王卫东, 马 靖, 张伟杰, 刘清波. 过表达CLEC5A基因抑制肝细胞癌增殖和转移并逆转上皮-间质转化[J]. 南方医科大学学报, 2023, 43(1): 85-91. |
[10] | 张换换, 陈 卓, 赵想弟, 霍 强, 程 秀. 紫草素通过抑制PKM2/PHD3/HIF-1α通路诱导肝癌细胞凋亡[J]. 南方医科大学学报, 2023, 43(1): 92-98. |
[11] | 宁诗雨, 何春梅, 郭泽皓, 张 豪, 莫之婧. VIPR1启动子甲基化促进转录因子AP-2α下调VIPR1的表达并促进肝细胞癌的生长[J]. 南方医科大学学报, 2022, 42(7): 957-965. |
[12] | 杨雪佳, 李玉杰, 吴登强, 马义丽, 周素芳. 肝细胞癌进展过程中的关键基因ATP1B3和ENAH的筛选与鉴定:基于数据挖掘和临床验证[J]. 南方医科大学学报, 2022, 42(6): 815-823. |
[13] | 陈曙冉, 董 锐, 李 艳, 吴华彰, 刘牧林. m7G相关lncRNAs是影响结肠癌患者预后和肿瘤微环境的潜在生物标志物[J]. 南方医科大学学报, 2022, 42(5): 681-689. |
[14] | 李 超, 陈双江, 姜业臻. 过表达miR-607通过下调TRPC5表达抑制肝细胞癌的生长和转移[J]. 南方医科大学学报, 2022, 42(11): 1587-1593. |
[15] | 刘 磊, 杜成友, 魏续福, 廖 锐. 癌旁circWDR25与肝细胞癌根治性切除术后的预后相关[J]. 南方医科大学学报, 2021, 41(9): 1388-1393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||