南方医科大学学报 ›› 2023, Vol. 43 ›› Issue (5): 839-851.doi: 10.12122/j.issn.1673-4254.2023.05.21
巩 高,曹 石,肖 慧,方威扬,阙与清,刘子蔚,陈超敏
GONG Gao, CAO Shi, XIAO Hui, FANG Weiyang, QUE Yuqing, LIU Ziwei, CHEN Chaomin
摘要: 目的 探讨磁共振成像(MRI)评估微血管浸润(MVI)存在的一致性和诊断性能,以及深度学习注意力机制和临床特征在MVI分类预测中的有效性。方法 选取2017年1月~2020年2月南方医科大学附属顺德医院158例患者数据进行回顾性实验,包括常规MRI序列(T1WI、T2WI、DWI)、增强MRI序列(AP、PP、EP、HBP)、合成MRI序列(T1mapping-pre、T1mapping-20min)得到MRI图像以及可能与MVI相关的临床数据。基于EfficientNetB0和注意力模块分别建立单序列深度学习模型和融合模型,并且通过深度学习可视化技术显示肝细胞癌微血管浸润的高危区域。结果 基于T1mapping-20min序列和临床特征的融合模型结果要优于其他融合模型。准确度为83.76%,AUC为85.01%,敏感度为83.78%,特异度为87.02%,且深度可视化技术可以显示MVI高危区域。结论 本研究成功建立基于多个MRI序列的单序列模型和融合模型,并验证了深度学习算法结合注意力机制和临床特征对MVI分类预测的有效性。