南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (9): 2046-2054.doi: 10.12122/j.issn.1673-4254.2025.09.24
• • 上一篇
收稿日期:
2025-01-02
出版日期:
2025-09-20
发布日期:
2025-09-28
通讯作者:
王婷
E-mail:dqf1689@smu.edu.cn;397174763@qq.com
作者简介:
杜庆锋,博士,主任医师,E-mail: dqf1689@smu.edu.cn
基金资助:
Qingfeng DU1,2(), Chao YANG3, Xueqing XIA1, Ting WANG1,2(
)
Received:
2025-01-02
Online:
2025-09-20
Published:
2025-09-28
Contact:
Ting WANG
E-mail:dqf1689@smu.edu.cn;397174763@qq.com
摘要:
细胞外囊泡(EVs)是由生物体主动释放到细胞外环境的纳米级脂质双层囊泡,富含特定的生物活性物质,如蛋白质、遗传物质和脂质等。由于这些囊泡参与细胞间相互作用,并且能透过血脑屏障,它们可能是治疗神经系统疾病的重要生物物质。在本文中,我们介绍了EVs生物起源及在神经系统疾病中治疗的潜力,并着重阐述了基于EVs在中药中治疗神经系统疾病的可能性,最后讨论了EVs治疗神经系统疾病研究领域的挑战和前景。
杜庆锋, 杨超, 夏雪晴, 王婷. 细胞外囊泡在神经系统疾病中的治疗潜力[J]. 南方医科大学学报, 2025, 45(9): 2046-2054.
Qingfeng DU, Chao YANG, Xueqing XIA, Ting WANG. Therapeutic potential of extracellular vesicles in neurological diseases[J]. Journal of Southern Medical University, 2025, 45(9): 2046-2054.
Classification | Subgroup | Size (nm) | Biomarkers | Origin |
---|---|---|---|---|
Exomeres | -35 | Hsp90-β | Endosomes | |
Exosomes | Exo-S | 60-80 | Tetraspanins, Tsg101, Alix, flotillin, Hsp70 | |
Exo-L | 90-120 | Tetraspanins, Tsg101, Alix, Hsp70 | ||
Microvesicles | 150-1000 | Integrins, selectins, CD40 | Plasma membrane | |
Apoptotic bodies | 500-2000 | Phosphatidylserine, genomic DNA | Plasma membrane, endoplasmic reticulum | |
Migrasomes | 500-3000 | Tetraspanins, chemokines, cytokines, growth factors, cholesterol | Retraction fibers |
表1 EVs的分类
Tab.1 Classification of EVs
Classification | Subgroup | Size (nm) | Biomarkers | Origin |
---|---|---|---|---|
Exomeres | -35 | Hsp90-β | Endosomes | |
Exosomes | Exo-S | 60-80 | Tetraspanins, Tsg101, Alix, flotillin, Hsp70 | |
Exo-L | 90-120 | Tetraspanins, Tsg101, Alix, Hsp70 | ||
Microvesicles | 150-1000 | Integrins, selectins, CD40 | Plasma membrane | |
Apoptotic bodies | 500-2000 | Phosphatidylserine, genomic DNA | Plasma membrane, endoplasmic reticulum | |
Migrasomes | 500-3000 | Tetraspanins, chemokines, cytokines, growth factors, cholesterol | Retraction fibers |
Disease | Sources of EVs | Cargos | Mechanism and function | Referen-ces |
---|---|---|---|---|
Alzheimer's disease | Bone marrow MSCs | Reduced Aβ and amyloid deposition | ||
MSCs | MSC-derived exosomal miR-223 inhibited the apoptosis of neurons by targeting PTEN, activating the PI3K/Akt pathway | |||
Hippocampus neuron cell | Fe65-EXO-Cory-B blocked the natural interaction between Fe65 and APP, induceing autophagy in APP-expressing neuronal cells | |||
MSCs | Reduced plaque deposition and Aβ | |||
Macrophages | Silibinin | Reducing Aβ aggregation and deactivating astrocytes | ||
Cells | Curcumin | Inhibiting phosphorylation of the Tau protein through activating the AKT/GSK-3β pathway | ||
Rat plasma | Quercetin | Inhibiting cyclin-dependent kinase 5-mediated phosphorylation of Tau and reducing formation of insoluble neurofibrillary tangles | ||
Parkinson's disease | Dendritic cells | shRNA minicircles | Decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons | |
Epicatechin gallate | Inhibiting caspase 3, increase the Bcl-2/BAX ratioto reduce apoptosis | |||
MSCs | Stimulating ICAM1-SMAD3/ P38MAPK pathway | |||
Astrocytes | miR-200a-3p suppressed MKK4 expressions | |||
MSCs | Curcumin | PR-EXO/PP@Cur targets the reductionα-synuclein aggregates, promotes neuron function recovery, and alleviates the neuroinflammation | ||
MSCs | Dihydrotanshinone I | Inhibition of peripheral inflammatory cell infiltration, precise regulation of inflammatory microglia in the substantia nigra |
表2 EVs在神经退行性病变中的治疗潜力
Tab.2 Therapeutic potential of EVs in neurodegenerative diseases
Disease | Sources of EVs | Cargos | Mechanism and function | Referen-ces |
---|---|---|---|---|
Alzheimer's disease | Bone marrow MSCs | Reduced Aβ and amyloid deposition | ||
MSCs | MSC-derived exosomal miR-223 inhibited the apoptosis of neurons by targeting PTEN, activating the PI3K/Akt pathway | |||
Hippocampus neuron cell | Fe65-EXO-Cory-B blocked the natural interaction between Fe65 and APP, induceing autophagy in APP-expressing neuronal cells | |||
MSCs | Reduced plaque deposition and Aβ | |||
Macrophages | Silibinin | Reducing Aβ aggregation and deactivating astrocytes | ||
Cells | Curcumin | Inhibiting phosphorylation of the Tau protein through activating the AKT/GSK-3β pathway | ||
Rat plasma | Quercetin | Inhibiting cyclin-dependent kinase 5-mediated phosphorylation of Tau and reducing formation of insoluble neurofibrillary tangles | ||
Parkinson's disease | Dendritic cells | shRNA minicircles | Decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons | |
Epicatechin gallate | Inhibiting caspase 3, increase the Bcl-2/BAX ratioto reduce apoptosis | |||
MSCs | Stimulating ICAM1-SMAD3/ P38MAPK pathway | |||
Astrocytes | miR-200a-3p suppressed MKK4 expressions | |||
MSCs | Curcumin | PR-EXO/PP@Cur targets the reductionα-synuclein aggregates, promotes neuron function recovery, and alleviates the neuroinflammation | ||
MSCs | Dihydrotanshinone I | Inhibition of peripheral inflammatory cell infiltration, precise regulation of inflammatory microglia in the substantia nigra |
[1] | Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases[J]. Signal Transduct Target Ther, 2024, 9(1): 27. doi:10.1038/s41392-024-01735-1 |
[2] | Wang W, Sun H, Duan H, et al. Isolation and usage of exosomes in central nervous system diseases[J]. CNS Neurosci Ther, 2024, 30(3): e14677. doi:10.1111/cns.14677 |
[3] | van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-28. doi:10.1038/nrm.2017.125 |
[4] | Wang T, Xing YL, Cheng ZY, et al. Analysis of single extracellular vesicles for biomedical applications with especial emphasis on cancer investigations[J]. Trac Trends Anal Chem, 2022, 152: 116604. doi:10.1016/j.trac.2022.116604 |
[5] | Shao H, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4): 1917-50. doi:10.1021/acs.chemrev.7b00534 |
[6] | Xu HT, Zhu YL, Hsiao AW, et al. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery[J]. Biomaterials, 2023, 294: 121998. doi:10.1016/j.biomaterials.2023.121998 |
[7] | Melamed JR, Yerneni SS, Arral ML, et al. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer[J]. Sci Adv, 2023, 9(4): eade1444. doi:10.1126/sciadv.ade1444 |
[8] | Cecchin R, Troyer Z, Witwer K, et al. Extracellular vesicles: The next generation in gene therapy delivery[J]. Mol Ther, 2023, 31(5): 1225-30. doi:10.1016/j.ymthe.2023.01.021 |
[9] | Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750. |
[10] | Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514. doi:10.1146/annurev-biochem-013118-111902 |
[11] | Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17. doi:10.1038/s41556-018-0250-9 |
[12] | Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation[J]. Nat Cell Biol, 2018, 20(3): 332-43. |
[13] | Cui JW, Wang X, Li JG, et al. Immune exosomes loading self-assembled nanomicelles traverse the blood-brain barrier for chemo-immunotherapy against glioblastoma[J]. ACS Nano, 2023, 17(2): 1464-84. doi:10.1021/acsnano.2c10219 |
[14] | Tenchov R, Sasso JM, Wang X, et al. Exosomes-Nature's lipid nanoparticles, a rising star in drug delivery and diagnostics[J]. ACS Nano, 2022, 16(11): 17802-46. doi:10.1021/acsnano.2c08774 |
[15] | van Niel G, Carter DRF, Clayton A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2022, 23(5): 369-82. doi:10.1038/s41580-022-00460-3 |
[16] | Wang SE. Extracellular vesicles in cancer therapy[J]. Semin Cancer Biol, 2022, 86: 296-309. doi:10.1016/j.semcancer.2022.06.001 |
[17] | Russo MN, Whaley LA, Norton ES, et al. Extracellular vesicles in the glioblastoma microenvironment: a diagnostic and therapeutic perspective[J]. Mol Aspects Med, 2023, 91: 101167. doi:10.1016/j.mam.2022.101167 |
[18] | Chen YS, Ng HY, Chen YW, et al. Additive manufacturing of Schwann cell-laden collagen/alginate nerve guidance conduits by freeform reversible embedding regulate neurogenesis via exosomes secretion towards peripheral nerve regeneration[J]. Biomater Adv, 2023, 146: 213276. doi:10.1016/j.bioadv.2022.213276 |
[19] | Sun J, Yuan Q, Guo L, et al. Brain microvascular endothelial cell-derived exosomes protect neurons from ischemia-reperfusion injury in mice[J]. Pharmaceuticals: Basel, 2022, 15(10): 1287. doi:10.3390/ph15101287 |
[20] | Li J, Li JJ, Peng YW, et al. Dendritic cell derived exosomes loaded neoantigens for personalized cancer immunotherapies[J]. J Control Release, 2023, 353: 423-33. doi:10.1016/j.jconrel.2022.11.053 |
[21] | Jin S, Wang Y, Wu X, et al. Young exosome bio-nanoparticles restore aging-impaired tendon stem/progenitor cell function and reparative capacity[J]. Adv Mater, 2023, 35(18): e2211602. doi:10.1002/adma.202211602 |
[22] | You Q, Wang F, Du R, et al. m6 A reader YTHDF1-targeting engineered small extracellular vesicles for gastric cancer therapy via epigenetic and immune regulation[J]. Adv Mater, 2023, 35(8): e2204910. doi:10.1002/adma.202370054 |
[23] | Wang T, Liu QY, Chen XY, et al. Imaging and tracking of tumor extracellular vesicles to unravel the progression of ovarian carcinoma using fluorescent membrane probes[J]. Sens Actuat B Chem, 2024, 415: 135975. doi:10.1016/j.snb.2024.135975 |
[24] | Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer - implications for future improvements in cancer care[J]. Nat Rev Clin Oncol, 2018, 15(10): 617-38. doi:10.1038/s41571-018-0036-9 |
[25] | Sun T, Li YY, Wu J, et al. Downregulation of exosomal MHC-I promotes glioma cells escaping from systemic immunosurveillance[J]. Nanomed Nanotechnol Biol Med, 2022, 46: 102605. doi:10.1016/j.nano.2022.102605 |
[26] | Kim G, Kim M, Lee Y, et al. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes[J]. J Control Release, 2020, 317: 273-81. doi:10.1016/j.jconrel.2019.11.009 |
[27] | Zhan Q, Yi K, Cui X, et al. Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy[J]. Neuro Oncol, 2022, 24(11): 1871-83. doi:10.1093/neuonc/noac071 |
[28] | Bai L, Liu Y, Guo K, et al. Ultrasound facilitates naturally equipped exosomes derived from macrophages and blood serum for orthotopic glioma treatment[J]. ACS Appl Mater Interfaces, 2019, 11(16): 14576-87. doi:10.1021/acsami.9b00893 |
[29] | Xu Y, Feng K, Zhao H, et al. Tumor-derived extracellular vesicles as messengers of natural products in cancer treatment[J]. Theranostics, 2022, 12(4): 1683-714. doi:10.7150/thno.67775 |
[30] | Chen Q, Wu D, Wang Y, et al. Exosomes as novel delivery systems for application in traditional Chinese medicine[J]. Molecules, 2022, 27(22): 7789. doi:10.3390/molecules27227789 |
[31] | Yang TZ, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio [J]. Pharm Res, 2015, 32(6): 2003-14. doi:10.1007/s11095-014-1593-y |
[32] | Kim J, Zhu Y, Chen S, et al. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood-brain-barrier penetration and tumor microenvironment modulation[J]. J Nanobiotechnology, 2023, 21(1): 253. doi:10.1186/s12951-023-02006-x |
[33] | Nouri Z, Barfar A, Perseh S, et al. Exosomes as therapeutic and drug delivery vehicle for neurodegenerative diseases[J]. J Nanobio-technology, 2024, 22(1): 463. doi:10.1186/s12951-024-02681-4 |
[34] | Yang JL, Zhang XF, Chen XJ, et al. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia[J]. Mol Ther Nucleic Acids, 2017, 7: 278-87. doi:10.1016/j.omtn.2017.04.010 |
[35] | Ganesh RV, Luoma V, Reddy U. Acute management of ischaemic stroke[J]. Anaesth Intensive Care Med, 2022, 23(12): 747-53. doi:10.1016/j.mpaic.2022.10.004 |
[36] | Zhu ZH, Jia F, Ahmed W, et al. Neural stem cell-derived exosome as a nano-sized carrier for BDNF delivery to a rat model of ischemic stroke[J]. Neural Regen Res, 2023, 18(2): 404-9. doi:10.4103/1673-5374.346466 |
[37] | Song Y, Li Z, He T, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124[J]. Theranostics, 2019, 9(10): 2910-23. doi:10.7150/thno.30879 |
[38] | Zhang Y, Chopp M, Liu XS, et al. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons[J]. Mol Neurobiol, 2017, 54(4): 2659-73. doi:10.1007/s12035-016-9851-0 |
[39] | Zhou ST, Gao BY, Sun CC, et al. Vascular endothelial cell-derived exosomes protect neural stem cells against ischemia/reperfusion injury[J]. Neuroscience, 2020, 441: 184-96. doi:10.1016/j.neuroscience.2020.05.046 |
[40] | Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150: 137-49. doi:10.1016/j.biomaterials.2017.10.012 |
[41] | Zhao H, Li YJ, Chen LH, et al. HucMSCs-derived miR-206-knockdown exosomes contribute to neuroprotection in subarachnoid hemorrhage induced early brain injury by targeting BDNF[J]. Neuroscience, 2019, 417: 11-23. doi:10.1016/j.neuroscience.2019.07.051 |
[42] | Liu ZW, Wang B, Guo QH. miR-26b-5p-modified hUB-MSCs derived exosomes attenuate early brain injury during subarachnoid hemorrhage via MAT2A-mediated the p38 MAPK/STAT3 signaling pathway[J]. Brain Res Bull, 2021, 175: 107-15. doi:10.1016/j.brainresbull.2021.07.014 |
[43] | Han M, Cao Y, Guo X, et al. Mesenchymal stem cell-derived extracellular vesicles promote microglial M2 polarization after subarachnoid hemorrhage in rats and involve the AMPK/NF‑κB signaling pathway[J]. Biomed Pharmacother, 2021, 133: 111048. doi:10.1016/j.biopha.2020.111048 |
[44] | Duan S, Wang F, Cao J, et al. Exosomes derived from microRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial M1 polarization[J]. Drug Des Devel Ther, 2020, 14: 3143-58. doi:10.2147/dddt.s255828 |
[45] | Rehman FU, Liu Y, Zheng M, et al. Exosomes based strategies for brain drug delivery[J]. Biomaterials, 2023, 293: 121949. doi:10.1016/j.biomaterials.2022.121949 |
[46] | Xiao Y, Wang SK, Zhang Y, et al. Role of extracellular vesicles in neurodegenerative diseases[J]. Prog Neurobiol, 2021, 201: 102022. doi:10.1016/j.pneurobio.2021.102022 |
[47] | Kalluri R, LeBleu VS. The biology, function,and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. doi:10.1126/science.aau6977 |
[48] | Liu S, Fan M, Xu JX, et al. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology[J]. J Neuroinfla-mmation, 2022, 19(1): 35. doi:10.1186/s12974-022-02393-2 |
[49] | Wei H, Xu Y, Chen Q, et al. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis[J]. Cell Death Dis, 2020, 11(4): 290. doi:10.1038/s41419-020-2490-4 |
[50] | Iyaswamy A, Thakur A, Guan XJ, et al. Fe65-engineered neuronal exosomes encapsulating corynoxine-B ameliorate cognition and pathology of Alzheimer's disease[J]. Signal Transduct Target Ther, 2023, 8(1): 404. doi:10.1038/s41392-023-01657-4 |
[51] | Cui GH, Guo HD, Li H, et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer's disease[J]. Immun Ageing, 2019, 16: 10. doi:10.1186/s12979-019-0150-2 |
[52] | Huo Q, Shi Y, Qi Y, et al. Biomimetic silibinin-loaded macrophage-derived exosomes induce dual inhibition of Aβ aggregation and astrocyte activation to alleviate cognitive impairment in a model of Alzheimer's disease[J]. Mater Sci Eng C Mater Biol Appl, 2021, 129: 112365. doi:10.1016/j.msec.2021.112365 |
[53] | Wang H, Sui HJ, Zheng Y, et al. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway[J]. Nanoscale, 2019, 11(15): 7481-96. doi:10.1039/c9nr01255a |
[54] | Qi Y, Guo L, Jiang Y, et al. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles[J]. Drug Deliv, 2020, 27(1): 745-55. doi:10.1080/10717544.2020.1762262 |
[55] | Meng W, He C, Hao Y, et al. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source[J]. Drug Deliv, 2020, 27(1): 585-98. doi:10.1080/10717544.2020.1748758 |
[56] | Izco M, Blesa J, Schleef M, et al. Systemic exosomal delivery of shRNA minicircles prevents parkinsonian pathology[J]. Mol Ther, 2019, 27(12): 2111-22. doi:10.1016/j.ymthe.2019.08.010 |
[57] | Luo S, Sun X, Huang M, et al. Enhanced neuroprotective effects of epicatechin gallate encapsulated by bovine milk-derived exosomes against Parkinson's disease through antiapoptosis and antimitophagy[J]. J Agric Food Chem, 2021, 69(17): 5134-43. doi:10.1021/acs.jafc.0c07658 |
[58] | Xue C, Li X, Ba L, et al. MSC-derived exosomes can enhance the angiogenesis of human brain MECs and show therapeutic potential in a mouse model of Parkinson's disease[J]. Aging Dis, 2021, 12(5): 1211-22. doi:10.14336/ad.2020.1221 |
[59] | Shakespear N, Ogura M, Yamaki J, et al. Astrocyte-derived exosomal microRNA miR-200a-3p prevents MPP+-induced apoptotic cell death through down-regulation of MKK4[J]. Neurochem Res, 2020, 45(5): 1020-33. doi:10.1007/s11064-020-02977-5 |
[60] | Peng H, Li Y, Ji W, et al. Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson's disease[J]. ACS Nano, 2022, 16(1): 869-84. doi:10.1021/acsnano.1c08473 |
[61] | Zhang C, Shao W, Yuan H, et al. Engineered extracellular vesicle-based nanoformulations that coordinate neuroinflammation and immune homeostasis, enhancing Parkinson's disease therapy[J]. ACS Nano, 2024, 18(34): 23014-31. doi:10.1021/acsnano.4c04674 |
[62] | Kotowska-Zimmer A, Przybyl L, Pewinska M, et al. A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease[J]. Mol Ther Nucleic Acids, 2022, 28: 702-15. doi:10.1016/j.omtn.2022.04.031 |
[63] | Zhang L, Wu T, Shan Y, et al. Therapeutic reversal of Huntington's disease by in vivo self-assembled siRNAs[J]. Brain, 2021, 144(11): 3421-35. doi:10.1093/brain/awab354 |
[64] | Datson NA, González-Barriga A, Kourkouta E, et al. The expanded CAG repeat in the huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain[J]. PLoS One, 2017, 12(2): e0171127. doi:10.1371/journal.pone.0171127 |
[65] | Lee ST, Im W, Ban JJ, et al. Exosome-based delivery of miR-124 in a Huntington’s disease model[J]. J Mov Disord, 2017, 10(1): 45-52. doi:10.14802/jmd.16054 |
[66] | Wu TT, Yu MC, Zhang L, et al. I02 Systemic injection of exosomal sirna significantly reduced huntingtin expression in transgenic mice of Huntington's disease[C]//Experimental therapeutics-preclinical. BMJ Publishing Group Ltd, 2018, 89: A88-9. doi:10.1136/jnnp-2018-ehdn.238 |
[67] | Wu XY, Liao BY, Xiao D, et al. Encapsulation of bryostatin-1 by targeted exosomes enhances remyelination and neuroprotection effects in the cuprizone-induced demyelinating animal model of multiple sclerosis[J]. Biomater Sci, 2022, 10(3): 714-27. doi:10.1039/d1bm01142a |
[68] | Li Z, Liu F, He X, et al. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia[J]. Int Immunopharmacol, 2019, 67: 268-80. doi:10.1016/j.intimp.2018.12.001 |
[69] | Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neuro-degenerative disorders[J]. ACS Nano, 2019, 13(6): 6670-88. doi:10.1021/acsnano.9b01004 |
[70] | Zheng X, Sun K, Liu YH, et al. Resveratrol-loaded macrophage exosomes alleviate multiple sclerosis through targeting microglia[J]. J Control Release, 2023, 353: 675-84. doi:10.1016/j.jconrel.2022.12.026 |
[71] | Xu M, Feng T, Liu B, et al. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies[J]. Theranostics, 2021, 11(18): 8926-44. doi:10.7150/thno.62330 |
[72] | Meng LL, Zhang C, Yu P. Treating cancer through modulating exosomal protein loading and function: The prospects of natural products and traditional Chinese medicine[J]. Pharmacol Res, 2024, 203: 107179. doi:10.1016/j.phrs.2024.107179 |
[73] | Abedi M, Hajinejad M, Atabi F, et al. Exosome derived from human neural stem cells improves motor activity and neurogenesis in a traumatic brain injury model[J]. Biomed Res Int, 2022, 2022: 6409346. doi:10.1155/2022/6409346 |
[74] | Zhang W, Hong J, Zhang H, et al. Astrocyte-derived exosomes protect hippocampal neurons after traumatic brain injury by suppressing mitochondrial oxidative stress and apoptosis[J]. Aging: Albany NY, 2021, 13(17): 21642-58. doi:10.18632/aging.203508 |
[75] | Zhuang XY, Xiang XY, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain[J]. Mol Ther, 2011, 19(10): 1769-79. doi:10.1038/mt.2011.164 |
[76] | Xu F, Mu J, Teng Y, et al. Restoring oat nanoparticles mediated brain memory function of mice fed alcohol by sorting inflammatory dectin-1 complex into microglial exosomes[J]. Small, 2022, 18(6): e2105385. doi:10.1002/smll.202105385 |
[77] | Tsivion-Visbord H, Perets N, Sofer T, et al. Mesenchymal stem cells derived extracellular vesicles improve behavioral and biochemical deficits in a phencyclidine model of schizophrenia[J]. Transl Psychiatry, 2020, 10(1): 305. doi:10.1038/s41398-020-00988-y |
[78] | Hu Y, Zhao M, Wang H, et al. Exosome-sheathed ROS-responsive nanogel to improve targeted therapy in perimenopausal depression[J]. J Nanobiotechnology, 2023, 21(1): 261. doi:10.1186/s12951-023-02005-y |
[79] | Yu X, Bai Y, Han B, et al. Extracellular vesicle-mediated delivery of circDYM alleviates CUS-induced depressive-like behaviours[J]. J Extracell Vesicles, 2022, 11(1): e12185. doi:10.1002/jev2.12185 |
[80] | Fouad K, Popovich PG, Kopp MA, et al. The neuroanatomical-functional paradox in spinal cord injury[J]. Nat Rev Neurol, 2021, 17(1): 53-62. doi:10.1038/s41582-020-00436-x |
[81] | Huang W, Lin M, Yang C, et al. Rat bone mesenchymal stem cell-derived exosomes loaded with miR-494 promoting neurofilament regeneration and behavioral function recovery after spinal cord injury[J]. Oxid Med Cell Longev, 2021, 2021: 1634917. doi:10.1155/2021/1634917 |
[82] | Shin H, Oh S, Hong S, et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes[J]. ACS Nano, 2020, 14(5): 5435-44. doi:10.1021/acsnano.9b09119 |
[83] | Fan H, Chen Z, Tang HB, et al. Exosomes derived from olfactory ensheathing cells provided neuroprotection for spinal cord injury by switching the phenotype of macrophages/microglia[J]. Bioeng Transl Med, 2022, 7(2): e10287. doi:10.1002/btm2.10287 |
[84] | Chen JC, Wu JH, Mu JF, et al. An antioxidative Sophora exosome-encapsulated hydrogel promotes spinal cord repair by regulating oxidative stress microenvironment[J]. Nanomed Nanotechnol Biol Med, 2023, 47: 102625. doi:10.1016/j.nano.2022.102625 |
[85] | Xian P, Hei Y, Wang R, et al. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice[J]. Theranostics, 2019, 9(20): 5956-75. doi:10.7150/thno.33872 |
[86] | Nakano M, Nagaishi K, Konari N, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes[J]. Sci Rep, 2016, 6: 24805. doi:10.1038/srep24805 |
[87] | Gao X, Gao LF, Kong XQ, et al. Mesenchymal stem cell-derived extracellular vesicles carrying miR-99b-3p restrain microglial activation and neuropathic pain by stimulating autophagy[J]. Int Immunopharmacol, 2023, 115: 109695. doi:10.1016/j.intimp.2023.109695 |
[88] | Ikeda T, Kawabori M, Zheng Y, et al. Intranasal administration of mesenchymal stem cell-derived exosome alleviates hypoxic-ischemic brain injury[J]. Pharmaceutics, 2024, 16(4): 446. doi:10.3390/pharmaceutics16040446 |
[1] | 张晨, 许智, 李想, 何彭翼翔, 曲凯林, 宁奇, 金奕玏, 杨宿睿, 吴旭. 具有光热抗菌活性的聚多巴胺修饰藻蓝蛋白纳米颗粒促进小鼠伤口皮肤愈合[J]. 南方医科大学学报, 2025, 45(9): 1959-1966. |
[2] | 张瑜, 李海涛, 潘玉卿, 曹杰贤, 翟丽, 张曦. MZB1基因在泛癌中的表达及其与免疫浸润及预后的关系[J]. 南方医科大学学报, 2025, 45(9): 2006-2018. |
[3] | 鲁义, 刘存志, 耿武军, 郑孝振, 谢敬敦, 张广防, 刘超, 李云, 瞿燕, 陈磊, 黄希照, 田航, 黎玉辉, 李红新, 钟和英, 陶荣贵, 钟杰, 庄越, 马钧阳, 胡艳, 方剑, 赵高峰, 肖建斌, 屠伟峰, 孙嘉泽, 段玉婷, 王保. 广东省抗癌协会肿瘤麻醉及镇痛治疗专委会广州市中西医结合学会麻醉学分委会[J]. 南方医科大学学报, 2025, 45(8): 1800-1808. |
[4] | 李红阳, 廖文雄, 雷鹏, 杨春园, 黎燕英, 薛丽萍, 谭朵, 刘思静, 吴艺, 陈美兰. 高度近视合并散光治疗中Toric-ICL比FS-LASIK具有更好的可预测性和近视治疗效果[J]. 南方医科大学学报, 2025, 45(6): 1113-1121. |
[5] | 梁芷玥, 徐利珊, 李柯柯, 于米铼, 安胜利. 临床试验中不同转组分析方法的比较[J]. 南方医科大学学报, 2025, 45(5): 1093-1102. |
[6] | 李煜桐, 宋杏钰, 孙蕊旭, 董璇, 刘宏伟. PYCR1的泛癌分析及其对膀胱癌化疗和免疫治疗应答的潜在预测价值[J]. 南方医科大学学报, 2025, 45(4): 880-892. |
[7] | 钟娜, 王会杰, 赵文英, 孙珍贵, 耿彪. 高表达RNF7增强非小细胞肺癌细胞的PD-1耐药:基于活化NF-kB通路促进CXCL1表达和髓源性抑制细胞的募集[J]. 南方医科大学学报, 2024, 44(9): 1704-1711. |
[8] | 朱名扬, 王博康, 张秀森, 周克旭, 苗泽宇, 孙江涛. 基线水平CCL19+树突状细胞可有效预测肺腺癌患者免疫治疗的敏感性[J]. 南方医科大学学报, 2024, 44(8): 1529-1536. |
[9] | 杨红丽, 向亚运, 谭婷婷, 雷阳. ORY-1001靶向赖氨酸特异性去甲基化酶1下调胶质母细胞瘤Notch/HES1通路的表达并发挥抗肿瘤作用[J]. 南方医科大学学报, 2024, 44(8): 1620-1630. |
[10] | 申磊磊, 陈莹, 云天洋, 郭俊唐, 柳曦, 张涛, 梁朝阳, 刘阳. IB期肺腺癌患者辅助治疗方案的筛选[J]. 南方医科大学学报, 2024, 44(5): 989-997. |
[11] | 王圆圆, 来天娇, 褚丹霞, 白晶, 严淑萍, 秦海霞, 郭瑞霞. 醋酸甲地孕酮联合盐酸二甲双胍作为早期子宫内膜样腺癌和子宫内膜非典型增生患者保留生育功能治疗:一项前瞻性研究[J]. 南方医科大学学报, 2024, 44(11): 2055-2062. |
[12] | 林晓丰, 黄马养, 陈君千, 周 逊, 钟卓丹, 陆文聪, 黄显莹, 刘添文. 锰基纳米材料用于胃肠道恶性肿瘤的化学动力治疗[J]. 南方医科大学学报, 2023, 43(8): 1432-1439. |
[13] | 滕 琳, 王 斌, 冯前进. 头颈癌放疗计划剂量分布的预测方法:基于深度学习的算法[J]. 南方医科大学学报, 2023, 43(6): 1010-1016. |
[14] | 王 丹, 吴凤林, 薛耀明, 林晓纯, 张 倩. 超声引导下无水乙醇硬化结合微波消融治疗功能性甲状旁腺囊肿1例[J]. 南方医科大学学报, 2023, 43(5): 868-872. |
[15] | 张自然, 谭家乐, 于子航, 刘承栋, 王 剑, 吴德华, 白 雪. FARSB对泛肿瘤的预后和冷肿瘤微环境的分层作用:基于整合单细胞和大块组织的DNA测序[J]. 南方医科大学学报, 2023, 43(5): 667-679. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||