南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (5): 1093-1102.doi: 10.12122/j.issn.1673-4254.2025.05.23

• • 上一篇    下一篇

临床试验中不同转组分析方法的比较

梁芷玥(), 徐利珊, 李柯柯, 于米铼, 安胜利()   

  1. 南方医科大学公共卫生学院生物统计学系,广东 广州 510515
  • 收稿日期:2024-11-26 出版日期:2025-05-20 发布日期:2025-05-23
  • 通讯作者: 安胜利 E-mail:2895806365@qq.com;1069766473@qq.com
  • 作者简介:梁芷玥,在读硕士研究生,E-mail: 2895806365@qq.com
  • 基金资助:
    广东省基础与应用基础研究基金(2022A1515012152)

A comparative study of different methods for treatment switching analysis in clinical trials

Zhiyue LIANG(), Lishan XU, Keke LI, Milai YU, Shengli AN()   

  1. Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou 510515, China
  • Received:2024-11-26 Online:2025-05-20 Published:2025-05-23
  • Contact: Shengli AN E-mail:2895806365@qq.com;1069766473@qq.com

摘要:

目的 通过比较临床试验中处理转组的常用方法,为不同场景下发生转组后分析方法的选择提供参考。 方法 基于肿瘤临床试验中患者转组的数据特征,分别模拟不同场景(样本量、患者预后、转组概率、治疗效果、膨胀因子)中患者的生存时间,比较意向治疗法(ITT)、符合方案法(PP)、删失法(PPcents)、实际治疗法(Treated)、秩保留结构加速失效模型(RPSFTM)、逆概率删失加权法(IPCW)、两阶段估计模型(TSE)、参数迭代法(IPE)所估计的治疗效应误差、均方误差与覆盖率。 结果 样本量对各方法的结果影响不大。相较于传统方法,复杂方法(RPSFTM、IPCW、TSE、IPE)在各种情况下误差均较低。IPCW法在转组概率较高时误差显著增加。TSE法在风险较低且转组概率较高时,误差和均方误差最低。IPE法在转组概率较低时具有明显优势,但在膨胀因子较小时可能会略低估治疗效应。 结论 转组概率较低且膨胀因子较小的情况下优先考虑IPE法或IPCW法;在转组概率较低且膨胀因子较大的情况下选择IPE法;在转组概率较大,膨胀因子较小且风险比较小的情况下选TSE法;其余情况建议选择RPSFTM法。

关键词: 治疗转组, 逆概率删失加权法, 秩保持结构失效模型, 两阶段估计法, 迭代参数估计法

Abstract:

Objective To compare the commonly used methods for analyzing treatment switching in clinical trials to facilitate selection of optimal methods in different scenarios. Methods Based on the data characteristics of patient conversion in oncology clinical trials, we simulated the survival time of patients across different scenarios and compared the bias, mean square error and coverages of the treatment effects derived from different methods. Results The sample size had an almost negligible impact on the outcomes of the various methods. Compared to conventional methods, more complex methods (RPSFTM, IPCW, TSE, and IPE) resulted in lower errors across different scenarios. The IPCW method could cause a significant increase in errors in cases where the probability of conversion was high. The TSE method had the lowest error and mean squared error when the risk was low and the probability of conversion was high. The IPE method had an obvious advantage in the scenario with a low probability of conversion, but it may slightly underestimate the treatment effect when the inflation factor was small. Conclusion The choice of a specific method for analyzing cohort transition should be made based on considerations of both the probability of conversion and inflation factor in different scenarios.

Key words: treatment switching, inverse probability censoring weighting, rank preserving structural failure time models, two-stage estimation method, iterative parameter estimation method