南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (5): 1103-1112.doi: 10.12122/j.issn.1673-4254.2025.05.24

• • 上一篇    

新型桥接钢板治疗RockwoodⅢ型肩锁关节脱位的生物力学性能

陈燕才1(), 张高峰2(), 李树波1, 罗念祥1, 张翼3   

  1. 1.南方医科大学顺德医院附属杏坛医院脊柱关节外科,广东 佛山 528306
    2.重庆三友机器制造有限责任公司,重庆 400074
    3.云南师范大学泛亚商学院,云南 昆明 650092
  • 收稿日期:2024-07-18 出版日期:2025-05-20 发布日期:2025-05-23
  • 通讯作者: 张高峰 E-mail:158532058@qq.com;peak18323110248@gmail.com
  • 作者简介:陈燕才,硕士,副主任医师,E-mail: 158532058@qq.com
  • 基金资助:
    2022年佛山市自筹经费类科技计划项目(2220001004442)

Biomechanical analysis of a novel bridging plate for treating Rockwood III acromioclavicular joint dislocation

Yancai CHEN1(), Gaofeng ZHANG2(), Shubo LI1, Nianxiang LUO1, Yi ZHANG3   

  1. 1.Spine and Joint Surgery, Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University, Foshan 528306, China
    2.Chongqing Sanyou Machinery Manufacturing Co. , Ltd, Chongqing 400074, China
    3.Pan-Asia Business School, Yunnan Normal University, Kunming 650092, China
  • Received:2024-07-18 Online:2025-05-20 Published:2025-05-23
  • Contact: Gaofeng ZHANG E-mail:158532058@qq.com;peak18323110248@gmail.com

摘要:

目的 探究新型桥接钢板治疗Rockwood Ⅲ型肩锁关节脱位症的生物力学性能。 方法 基于1名Rockwood Ⅲ型肩锁关节脱位患者的CT数据设计新型桥接钢板结构,并建立桥接钢板-肩锁关节相互作用有限元模型,研究在术后复位状态、正常负载及撞击荷载下的受力变形特征及生物力学适配性,探讨其固定机制及应用优势。 结果 桥接体系刚度为27.78 N/mm,接近肩锁关节韧带刚度(26.05 N/mm),符合柔性变形要求。正常负载下桥接体系最大应力为88.29 MPa,满足生理活动要求;撞击荷载下最大值达480 MPa,钢缆柔性变形进入塑性耗能阶段,可有效缓冲局部应力集中,降低刚性骨折风险。骨骼高应力区主要出现在C1~C4螺栓孔边缘,正常负载下骨骼应力最大值为0.762 MPa,撞击荷载下最大值为5.963 MPa,分别为螺栓应力的2.86%和1.66%。 结论 新型桥接钢板相比传统内固定治疗,更能适配肩锁关节生物力学特性。该固定结构在提供足够稳定性同时,允许一定程度的生理微动,有助于优化术后康复效果。特别是固定环与钢缆连接区的柔性变形显著,应避免采用硬脆性材料作为连接区。此外,C1~C4螺栓孔边应力集中问题也需在临床实践中予以特别关注。

关键词: 肩锁关节脱位, 新型桥接钢板, 有限元模型, 生物力学性能, 固定机制

Abstract:

Objective To assess the biomechanical performance of a novel bridging plate for treating Rockwood III acromioclavicular joint dislocation. Methods A novel bridging plate structure was designed based on CT data from a patient with Rockwood type III acromioclavicular joint dislocation, and a finite element model of the bridging plate-acromioclavicular joint interaction was constructed. The stress and deformation characteristics and biomechanical compatibility of the plate under post-reduction, normal loading, and impact loading conditions were analyzed to evaluate its fixation mechanism and clinical advantages. Results The stiffness of the bridging system was 27.78 N/mm, close to that of acromioclavicular joint ligaments (26.05 N/mm) and meeting the requirements for flexible deformation. Under normal loading, the maximum stress in the bridging system was 88.29 MPa to sustain physiological activities; under impact loading, the maximum stress reached 480 MPa, and the cable underwent plastic deformation to dissipate energy and effectively buffer local stress concentrations, thereby reducing the risk of rigid bone fractures. The high-stress regions in the bone primarily occurred at the edges of the C1-C4 screw holes. The maximum bone stress was 0.762 MPa under normal loading and 5.963 MPa under impact loading, accounting for 2.86% and 1.66% of the corresponding bolt stresses, respectively. Conclusion The novel bridging plate is better adapted to biomechanical characteristics of the acromioclavicular joint compared to traditional internal fixation. This fixation system provides sufficient stability while allowing physiological micromotion to facilitate postoperative rehabilitation. Significant flexible deformation can occur at the connection between the fixation ring and the cable, and brittle materials should not be used in this region. The issue of stress concentration at the C1-C4 screw holes requires special attention in its clinical application.

Key words: acromioclavicular dislocation, new acromioclavicular joint plate, finite element model, biomechanical property, fixed mechanism