南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (5): 1082-1092.doi: 10.12122/j.issn.1673-4254.2025.05.22

• • 上一篇    下一篇

AConvLSTM U-Net:基于双向稠密连接和注意力机制的多尺度颌骨囊肿分割模型

李苏强1(), 王周阳2, 产思贤2, 周小龙3()   

  1. 1.安徽建筑大学电子与信息工程学院,安徽 合肥 230601
    2.浙江工业大学计算机科学与技术学院,浙江 杭州 310023
    3.衢州学院电气与信息工程学院,浙江 衢州 324000
  • 收稿日期:2024-11-04 出版日期:2025-05-20 发布日期:2025-05-23
  • 通讯作者: 周小龙 E-mail:sqli228@stu.ahjzu.edu.cn;xiaolong@ieee.org
  • 作者简介:李苏强,在读硕士研究生,E-mail: sqli228@stu.ahjzu.edu.cn
  • 基金资助:
    国家自然科学基金(62272267);浙江省自然科学基金(LZ23F020001)

AConvLSTM U-Net: a multi-scale jaw cyst segmentation model based on bidirectional dense connection and attention mechanism

Suqiang LI1(), Zhouyang WANG2, Sixian CHAN2, Xiaolong ZHOU3()   

  1. 1.School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China
    2.College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
    3.College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China
  • Received:2024-11-04 Online:2025-05-20 Published:2025-05-23
  • Contact: Xiaolong ZHOU E-mail:sqli228@stu.ahjzu.edu.cn;xiaolong@ieee.org
  • Supported by:
    National Natural Science Foundation of China(62272267)

摘要:

目的 提出一种基于双向稠密连接和注意力机制的多尺度颌骨囊肿分割模型(AConvLSTM U-Net),实现颌骨囊肿图像的准确自动分割。 方法 使用含有2592张颌骨囊肿图像数据集。首先,AConvLSTM U-Net在编码路径上设计移动翻转瓶颈卷积模块(MBC)以增强特征提取能力。其次,采用双路径稠密卷积(DPD)连接编码器和解码器,在跳跃连接中引入双向ConvLSTM以获取丰富的语义信息。然后,解码路径上使用基于空间和通道注意力的解码块(scSE),以提升对重要信息的关注。最后,设计了全尺寸深度监督模块(DS),并结合联合损失函数对模型进行优化,以进一步提高分割精度。 结果 AConvLSTM U-Net在颌骨囊肿病灶分割的实验结果在MCC、DSC和JSC方面分别达到93.8443%、93.9067%、88.5133%,性能均优于所有被比较的分割模型。 结论 所提出的算法在颌骨囊肿数据集上表现出较高的准确性与鲁棒性,优于多种主流方法,展现了AConvLSTM U-Net在颌骨囊肿图像分割的优越性能和辅助诊断的巨大潜力。

关键词: 注意力机制, 多尺度颌骨囊肿分割模型, 稠密卷积

Abstract:

Objective We propose a multi-scale jaw cyst segmentation model, AConvLSTM U-Net, which is based on bidirectional dense connections and attention mechanisms to achieve accurate automatic segmentation of mandibular cyst images. Methods A dataset consisting of 2592 jaw cyst images was used. AConvLSTM U-Net designs a MBC on the encoding path to enhance feature extraction capabilities. A DPD was used to connect the encoder and decoder, and a bidirectional ConvLSTM was introduced in the jump connection to obtain rich semantic information. A decoding block based on scSE was then used on the decoding path to enhance the focus on important information. Finally, a DS was designed, and the model was optimized by integrating a joint loss function to further improve the segmentation accuracy. Results The experiment with AConvLSTM U-Net for jaw cyst lesion segmentation showed a MCC of 93.8443%, a DSC of 93.9067%, and a JSC of 88.5133%, outperforming all the other comparison segmentation models. Conclusion The proposed algorithm shows a high accuracy and robustness on the jaw cyst dataset, demonstrating its superior performance over many existing methods for automatic segmentation of jaw cyst images and its potential to assist clinical diagnosis.

Key words: attention mechanism, jaw cyst segmentation, dense convolution