南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (7): 1563-1570.doi: 10.12122/j.issn.1673-4254.2025.07.24
• • 上一篇
郑子瑜1(), 杨夏颖3(
), 吴圣杰2(
), 张诗婕3, 吕国荣3, 柳培忠2(
), 王珺4(
), 何韶铮3(
)
收稿日期:
2025-03-28
出版日期:
2025-07-20
发布日期:
2025-07-17
通讯作者:
柳培忠,王珺,何韶铮
E-mail:zhzy@hqu.edu.cn;19942911457@163.com;1136132863@qq.com;pzliu@hqu.edu.cn;490089243@qq.com;1251282489@qq.com
作者简介:
郑子瑜,工程师,E-mail: zhzy@hqu.edu.cn基金资助:
Ziyu ZHENG1(), Xiaying YANG3(
), Shengjie WU2(
), Shijie ZHANG3, Guorong LYU3, Peizhong LIU2(
), Jun WANG4(
), Shaozheng HE3(
)
Received:
2025-03-28
Online:
2025-07-20
Published:
2025-07-17
Contact:
Peizhong LIU, Jun WANG, Shaozheng HE
E-mail:zhzy@hqu.edu.cn;19942911457@163.com;1136132863@qq.com;pzliu@hqu.edu.cn;490089243@qq.com;1251282489@qq.com
摘要:
目的 探讨多特征融合的产时超声胎方位智能分析模型在提高分娩过程中胎方位分类准确性方面的应用效果。 方法 本研究提出模型由输入、骨干网络和分类头3部分组成。输入部分进行数据增强,以提高样本质量和模型的泛化能力;主干部分进行特征提取,在Yolov8的基础上结合了CBAM、ECA、PSA注意力机制和AIFI特征交互模块,以提升特征提取效率和模型性能;分类头由卷积层和softmax函数组成,输出最终各个类别的概率值。用医生对关键器官(眼睛,脸部,头部,丘脑,脊柱)进行画框标注后的图像用于训练,以提高对枕前、枕后和枕横方位的分类准确性。 结果 实验结果表明,本文提出的模型在胎方位分类任务中表现出色,准确率(ACC)达到了0.984,PR曲线下面积即平均精确度(PR-AUC)为0.993,特征曲线下面积(ROC-AUC)为0.984,kappa一致性检验分数为0.974,该深度学习模型表现出了非常好的性能,模型预测结果和实际类别一致。 结论 本研究提出的多特征融合模型能够高效、准确地分类产时超声图像中的胎方位,为临床提供可靠的辅助工具。
郑子瑜, 杨夏颖, 吴圣杰, 张诗婕, 吕国荣, 柳培忠, 王珺, 何韶铮. 多特征融合的产时超声胎方位识别模型[J]. 南方医科大学学报, 2025, 45(7): 1563-1570.
Ziyu ZHENG, Xiaying YANG, Shengjie WU, Shijie ZHANG, Guorong LYU, Peizhong LIU, Jun WANG, Shaozheng HE. A multi-feature fusion-based model for fetal orientation classification from intrapartum ultrasound videos[J]. Journal of Southern Medical University, 2025, 45(7): 1563-1570.
Classes | Train (Number of images) | Val (Number of images) | Video Test (number of video/number of frames) |
---|---|---|---|
OA | 1006 | 125 | 3/482 |
OP | 1708 | 213 | 3/491 |
OT | 1270 | 158 | 2/346 |
Total | 3984 | 496 | 8/1319 |
表1 数据分布
Tab.1 Data distribution
Classes | Train (Number of images) | Val (Number of images) | Video Test (number of video/number of frames) |
---|---|---|---|
OA | 1006 | 125 | 3/482 |
OP | 1708 | 213 | 3/491 |
OT | 1270 | 158 | 2/346 |
Total | 3984 | 496 | 8/1319 |
Model evaluation metrics | Definition |
---|---|
ACC | |
Precision (P) | |
Recall (R) | |
PR-AUC | The average precision, which is the average of the precision over different recall points, is shown as the area under the P-R curve on the P-R curve plot |
kappa | |
ROC-AUC | The area under the ROC curve |
表2 模型评价指标定义
Tab.2 Definition of the model evaluation metrics
Model evaluation metrics | Definition |
---|---|
ACC | |
Precision (P) | |
Recall (R) | |
PR-AUC | The average precision, which is the average of the precision over different recall points, is shown as the area under the P-R curve on the P-R curve plot |
kappa | |
ROC-AUC | The area under the ROC curve |
Label | Ours | EfficientNet_b2 | DenseNet169 | ResNet50 | Yolo8s_cls | ConvNeXt | MPViT | Swim transformer |
---|---|---|---|---|---|---|---|---|
OA1 | OA | OA | OP | OA | OA | OP | OA | OT |
OP1 | OP | OP | OP | OP | OP | OP | OA | OP |
OT1 | OT | OT | OT | OT | OT | OT | OA | OT |
OA2 | OA | OA | OA | OA | OA | OA | OA | OT |
OP2 | OP | OP | OP | OP | OP | OP | OA | OP |
OA3 | OA | OA | OA | OA | OA | OA | OA | OT |
OP3 | OP | OP | OP | OP | OP | OP | OA | OT |
OT3 | OT | OT | OT | OT | OT | OT | OA | OT |
表3 不同模型对视频的分类结果
Tab.3 Classification results of videos by different models
Label | Ours | EfficientNet_b2 | DenseNet169 | ResNet50 | Yolo8s_cls | ConvNeXt | MPViT | Swim transformer |
---|---|---|---|---|---|---|---|---|
OA1 | OA | OA | OP | OA | OA | OP | OA | OT |
OP1 | OP | OP | OP | OP | OP | OP | OA | OP |
OT1 | OT | OT | OT | OT | OT | OT | OA | OT |
OA2 | OA | OA | OA | OA | OA | OA | OA | OT |
OP2 | OP | OP | OP | OP | OP | OP | OA | OP |
OA3 | OA | OA | OA | OA | OA | OA | OA | OT |
OP3 | OP | OP | OP | OP | OP | OP | OA | OT |
OT3 | OT | OT | OT | OT | OT | OT | OA | OT |
Model | PR-AUC | ROC-AUC | ACC | kappa |
---|---|---|---|---|
EfficientNet_b2 | 0.92545 | 0.96126 | 0.91431 | 0.86892 |
DenseNet169 | 0.92836 | 0.96201 | 0.91519 | 0.86879 |
ResNet50 | 0.92621 | 0.95507 | 0.92307 | 0.88284 |
Yolo8s_cls | 0.87686 | 0.94205 | 0.87456 | 0.80322 |
ConvNeXt | 0.91083 | 0.94177 | 0.91145 | 0.86351 |
MPViT | 0.47209 | 0.57401 | 0.37571 | 0.00162 |
Swim transformer | 0.49753 | 0.62991 | 0.48685 | 0.22014 |
Yolov8+CBAM | 0.88311 | 0.94350 | 0.90500 | 0.85025 |
Yolov8+CSAM | 0.55933 | 0.75915 | 0.64312 | 0.42443 |
Ours | 0.91545 | 0.95944 | 0.92499 | 0.88553 |
表4 不同模型结果的比较
Tab.4 Comparison of results from different models
Model | PR-AUC | ROC-AUC | ACC | kappa |
---|---|---|---|---|
EfficientNet_b2 | 0.92545 | 0.96126 | 0.91431 | 0.86892 |
DenseNet169 | 0.92836 | 0.96201 | 0.91519 | 0.86879 |
ResNet50 | 0.92621 | 0.95507 | 0.92307 | 0.88284 |
Yolo8s_cls | 0.87686 | 0.94205 | 0.87456 | 0.80322 |
ConvNeXt | 0.91083 | 0.94177 | 0.91145 | 0.86351 |
MPViT | 0.47209 | 0.57401 | 0.37571 | 0.00162 |
Swim transformer | 0.49753 | 0.62991 | 0.48685 | 0.22014 |
Yolov8+CBAM | 0.88311 | 0.94350 | 0.90500 | 0.85025 |
Yolov8+CSAM | 0.55933 | 0.75915 | 0.64312 | 0.42443 |
Ours | 0.91545 | 0.95944 | 0.92499 | 0.88553 |
Modules | PR-AUC | ROC-AUC | ACC | kappa | |||
---|---|---|---|---|---|---|---|
CBAM | PSA | ECA | AIFI | ||||
0 | 0 | 0 | 0 | 0.87686 | 0.94205 | 0.87456 | 0.80322 |
1 | 0 | 0 | 0 | 0.88311 | 0.94350 | 0.90500 | 0.85025 |
0 | 1 | 0 | 0 | 0.91193 | 0.94745 | 0.89150 | 0.83678 |
0 | 0 | 1 | 0 | 0.89821 | 0.94370 | 0.89865 | 0.84478 |
0 | 0 | 0 | 1 | 0.86844 | 0.93363 | 0.86554 | 0.79148 |
1 | 1 | 1 | 1 | 0.91545 | 0.95944 | 0.92499 | 0.88553 |
表5 消融实验
Tab.5 Ablation experiment
Modules | PR-AUC | ROC-AUC | ACC | kappa | |||
---|---|---|---|---|---|---|---|
CBAM | PSA | ECA | AIFI | ||||
0 | 0 | 0 | 0 | 0.87686 | 0.94205 | 0.87456 | 0.80322 |
1 | 0 | 0 | 0 | 0.88311 | 0.94350 | 0.90500 | 0.85025 |
0 | 1 | 0 | 0 | 0.91193 | 0.94745 | 0.89150 | 0.83678 |
0 | 0 | 1 | 0 | 0.89821 | 0.94370 | 0.89865 | 0.84478 |
0 | 0 | 0 | 1 | 0.86844 | 0.93363 | 0.86554 | 0.79148 |
1 | 1 | 1 | 1 | 0.91545 | 0.95944 | 0.92499 | 0.88553 |
[1] | Leung KY. Applications of advanced ultrasound technology in obstetrics[J]. Diagnostics (Basel), 2021, 11(7): 1217. doi:10.3390/diagnostics11071217 |
[2] | Malvasi A. Intrapartum Ultrasonography for Labor Management[M]. Cham: Springer International Publishing, 2021. doi:10.1007/978-3-030-57595-3 |
[3] | Yang TZ, Luo H. Practical Ultrasonography in Obstetrics and Gynecology[M]. Cham: Springer Nature Singapore, 2022. doi:10.1007/978-981-16-4477-1 |
[4] | Wiafe YA, Whitehead B, Venables H, et al. Comparing intrapartum ultrasound and clinical examination in the assessment of fetal head position in African women[J]. J Ultrason, 2019, 19(79): 249-54. doi:10.15557/JoU.2019.0037 |
[5] | 张勤建, 颜建英. 产时超声辅助产程管理[J]. 中国实用妇科与产科杂志, 2024, 40(2): 142-7. |
[6] | 孙璐鑫, 韩英杰. 产时超声在产程监测中的应用[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 84-8. |
[7] | Ghi T, Eggebø T, Lees C, et al. ISUOG Practice Guidelines: intrapartum ultrasound[J]. Ultrasound Obstet Gynecol, 2018, 52(1): 128-39. doi:10.1002/uog.19072 |
[8] | Lieberman E, Davidson K, Lee-Parritz A, et al. Changes in fetal position during labor and their association with epidural analgesia[J]. Obstet Gynecol, 2005, 105(5 Pt 1): 974-82. doi:10.1097/01.AOG.0000158861.43593.49 |
[9] | Ghi T, Dall’Asta A. Sonographic evaluation of the fetal head position and attitude during labor[J]. Am J Obstet Gynecol, 2024, 230(3S): S890-900. doi:10.1016/j.ajog.2022.06.003 |
[10] | Guittier MJ, Othenin-Girard V, Irion O, et al. Maternal positioning to correct occipito-posterior fetal position in labour: a randomised controlled trial[J]. BMC Pregnancy Childbirth, 2014, 14: 83. doi:10.1186/1471-2393-14-83 |
[11] | 杨建成, 马 琰, 徐 颖, 等. 胎方位异常阴道分娩第二产程会阴超声测量产程进展参数的临床研究[J]. 现代妇产科进展, 2024, 33(9): 656-61. |
[12] | Bertholdt C, Piffer A, Pol H, et al. Management of persistent occiput posterior position: The added value of manual rotation[J]. Int J Gynaecol Obstet, 2022, 157(3): 613-7. doi:10.1002/ijgo.13874 |
[13] | Vitner D, Paltieli Y, Haberman S, et al. Prospective multicenter study of ultrasound-based measurements of fetal head station and position throughout labor[J]. Ultrasound Obstet Gynecol, 2015, 46(5): 611-5. doi:10.1002/uog.14821 |
[14] | Senécal J, Xiong X, Fraser WD, et al. Effect of fetal position on second-stage duration and labor outcome[J]. Obstet Gynecol, 2005, 105(4): 763-72. doi:10.1097/01.aog.0000154889.47063.84 |
[15] | de Vries B, Phipps H, Kuah S, et al. Transverse occiput position: using manual rotation to aid normal birth and improve delivery OUTcomes (TURN-OUT): a study protocol for a randomised controlled trial[J]. Trials, 2015, 16: 362. doi:10.1186/s13063-015-0854-3 |
[16] | Simkin P. The fetal occiput posterior position: state of the science and a new perspective[J]. Birth, 2010, 37(1): 61-71. doi:10.1111/j.1523-536X.2009.00380.x |
[17] | Fiorentino MC, Villani FP, Di Cosmo M, et al. A review on deep-learning algorithms for fetal ultrasound-image analysis[J]. Med Image Anal, 2023, 83: 102629. doi:10.1016/j.media.2022.102629 |
[18] | Burgos-Artizzu XP, Coronado-Gutiérrez D, Valenzuela-Alcaraz B, et al. Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes[J]. Sci Rep, 2020, 10(1): 10200. doi:10.1038/s41598-020-67076-5 |
[19] | Ghi T, Conversano F, Zegarra RR, et al. Novel artificial intelligence approach for automatic differentiation of fetal occiput anterior and non-occiput anterior positions during labor[J]. Ultrasound Obstet Gynecol, 2022, 59(1): 93-9. doi:10.1002/uog.23739 |
[20] | Dall’Asta A, Conversano F, Minopoli M, et al. OC02.02: Artificial intelligence for automatic classification of anterior/posterior/transverse occiput positions using transperineal sonography[J]. Ultrasound Obstet Gynecol, 2022, 60(S1): 4-5. doi:10.1002/uog.24995 |
[21] | Eisenstat J, Wagner MW, Vidarsson L, et al. Fet-net algorithm for automatic detection of fetal orientation in fetal MRI[J]. Bioengineering (Basel), 2023, 10(2): 140. doi:10.3390/bioengineering10020140 |
[22] | Zegarra RR, Conversano F, Dall’Asta A, et al. A deep learning approach to identify the fetal head position using transperineal ultrasound during labor[J]. Eur J Obstet Gynecol Reprod Biol, 2024, 301: 147-53. doi:10.1016/j.ejogrb.2024.08.012 |
[23] | Woo S, Park J, Lee JY, et al. CBAM: convolutional block attention module[M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. doi:10.1007/978-3-030-01234-2_1 |
[24] | Wang QL, Wu BG, Zhu PF, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 11531-9. doi:10.1109/cvpr42600.2020.01155 |
[25] | Wang A, Chen H, Liu LH, et al. YOLOv10: real-time end-to-end object detection[EB/OL]. 2024: 2405.14458. . |
[26] | Zhao YA, Lv WY, Xu SL, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. 2023: 2304.08069. . doi:10.1109/cvpr52733.2024.01605 |
[27] | Tan MX, Le QV. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. 2019: 1905.11946. . doi:10.1007/978-1-4842-6168-2_10 |
[28] | Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 2261-9. doi:10.1109/cvpr.2017.243 |
[29] | He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-8. doi:10.1109/cvpr.2016.90 |
[30] | Liu Z, Mao HZ, Wu CY, et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 11966-76. doi:10.1109/cvpr52688.2022.01167 |
[31] | Lee Y, Kim J, Willette J, et al. MPViT: multi-path vision transformer for dense prediction[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 7277-86. doi:10.1109/cvpr52688.2022.00714 |
[32] | Liu Z, Lin YT, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 9992-10002. doi:10.1109/iccv48922.2021.00986 |
[33] | Yu Hung AL, Zheng HX, Zhao K, et al. CSAM: a 2.5D cross-slice attention module for anisotropic volumetric medical image segmentation[J]. IEEE Winter Conf Appl Comput Vis, 2024, 2024: 5911-20. doi:10.1109/wacv57701.2024.00582 |
[1] | 计寰宇, 王蕊, 高盛祥, 车文刚. SG-UNet:基于全局注意力和自校准卷积增强的黑色素瘤分割模型[J]. 南方医科大学学报, 2025, 45(6): 1317-1326. |
[2] | 李苏强, 王周阳, 产思贤, 周小龙. AConvLSTM U-Net:基于双向稠密连接和注意力机制的多尺度颌骨囊肿分割模型[J]. 南方医科大学学报, 2025, 45(5): 1082-1092. |
[3] | 任煜瀛, 黄凌霄, 杜方, 姚新波. 基于改进RT-DETR的多尺度特征融合的高效轻量皮肤病理检测方法[J]. 南方医科大学学报, 2025, 45(2): 409-421. |
[4] | 贺亚迪, 周炫汝, 金锦辉, 宋婷. 基于PE-CycleGAN网络的鼻咽癌自适应放疗CBCT-sCT生成研究[J]. 南方医科大学学报, 2025, 45(1): 179-186. |
[5] | 方威扬, 肖慧, 王爽, 林晓明, 陈超敏. 基于MRI影像和临床参数特征融合的深度学习模型预测术前肝细胞癌的细胞角蛋白19状态[J]. 南方医科大学学报, 2024, 44(9): 1738-1751. |
[6] | 欧嘉志, 詹长安, 杨丰. 一维卷积神经网络的自编码癫痫发作异常检测模型[J]. 南方医科大学学报, 2024, 44(9): 1796-1804. |
[7] | 汪辰, 蒙铭强, 李明强, 王永波, 曾栋, 边兆英, 马建华. 基于双域Transformer耦合特征学习的CT截断数据重建模型[J]. 南方医科大学学报, 2024, 44(5): 950-959. |
[8] | 龙楷兴, 翁丹仪, 耿 舰, 路艳蒙, 周志涛, 曹 蕾. 基于多模态多示例学习的免疫介导性肾小球疾病自动分类方法[J]. 南方医科大学学报, 2024, 44(3): 585-593. |
[9] | 肖 慧, 方威扬, 林铭俊, 周振忠, 费洪文, 陈超敏. 基于两阶段分析的多尺度颈动脉斑块检测方法[J]. 南方医科大学学报, 2024, 44(2): 387-396. |
[10] | 刘操林, 邹青清, 王梦虹, 杨芹枚, 宋丽文, 陆紫箫, 冯前进, 赵英华. 鉴别原发性骨肿瘤骨样和软骨样基质矿化:基于CT和临床特征的深度学习融合模型的多中心回顾性研究[J]. 南方医科大学学报, 2024, 44(12): 2412-2420. |
[11] | 弥 佳, 周宇佳, 冯前进. 基于正交视角X线图像重建的3D/2D配准方法[J]. 南方医科大学学报, 2023, 43(9): 1636-1643. |
[12] | 楚智钦, 屈耀铭, 钟 涛, 梁淑君, 温志波, 张 煜. 磁共振酰胺质子转移模态的胶质瘤IDH基因分型识别:基于深度学习的Dual-Aware框架[J]. 南方医科大学学报, 2023, 43(8): 1379-1387. |
[13] | 于佳弘, 张昆鹏, 靳 爽, 苏 哲, 徐晓桐, 张 华. 弦图插值结合UNIT网络图像转换的CT金属伪影校正[J]. 南方医科大学学报, 2023, 43(7): 1214-1223. |
[14] | 滕 琳, 王 斌, 冯前进. 头颈癌放疗计划剂量分布的预测方法:基于深度学习的算法[J]. 南方医科大学学报, 2023, 43(6): 1010-1016. |
[15] | 周 昊, 曾 栋, 边兆英, 马建华. 基于半监督网络的组织感知CT图像对比度的增强方法[J]. 南方医科大学学报, 2023, 43(6): 985-993. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||