南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (7): 1563-1570.doi: 10.12122/j.issn.1673-4254.2025.07.24

• • 上一篇    

多特征融合的产时超声胎方位识别模型

郑子瑜1(), 杨夏颖3(), 吴圣杰2(), 张诗婕3, 吕国荣3, 柳培忠2(), 王珺4(), 何韶铮3()   

  1. 1.华侨大学信息化建设与管理处,福建 泉州 362021
    2.华侨大学工学院,福建 泉州 362021
    3.福建医科大学附属第二医院超声科,福建 泉州 362000
    4.泉州医学高等专科学校附属人民医院妇产科,福建 泉州 362018
  • 收稿日期:2025-03-28 出版日期:2025-07-20 发布日期:2025-07-17
  • 通讯作者: 柳培忠,王珺,何韶铮 E-mail:zhzy@hqu.edu.cn;19942911457@163.com;1136132863@qq.com;pzliu@hqu.edu.cn;490089243@qq.com;1251282489@qq.com
  • 作者简介:郑子瑜,工程师,E-mail: zhzy@hqu.edu.cn
    杨夏颖,在读硕士研究生,E-mail: 19942911457@163.com
    吴圣杰,在读硕士研究生,E-mail: 1136132863@qq.com
    第一联系人:郑子瑜、杨夏颖、吴圣杰共同为第一作者
  • 基金资助:
    福建省科技创新联合资金项目资助(2024Y9392);福建省科技创新联合资金项目资助(2024Y9386);福建省科技创新联合资金项目资助(2024Y9435)

A multi-feature fusion-based model for fetal orientation classification from intrapartum ultrasound videos

Ziyu ZHENG1(), Xiaying YANG3(), Shengjie WU2(), Shijie ZHANG3, Guorong LYU3, Peizhong LIU2(), Jun WANG4(), Shaozheng HE3()   

  1. 1.Department of Information Construction and Management
    2.College of Engineering, Huaqiao University, Quanzhou 362021, China
    3.Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
    4.Department of Obstetrics and Gynecology, Affiliated People's Hospital of Quanzhou Medical College, Quanzhou 362018, China
  • Received:2025-03-28 Online:2025-07-20 Published:2025-07-17
  • Contact: Peizhong LIU, Jun WANG, Shaozheng HE E-mail:zhzy@hqu.edu.cn;19942911457@163.com;1136132863@qq.com;pzliu@hqu.edu.cn;490089243@qq.com;1251282489@qq.com

摘要:

目的 探讨多特征融合的产时超声胎方位智能分析模型在提高分娩过程中胎方位分类准确性方面的应用效果。 方法 本研究提出模型由输入、骨干网络和分类头3部分组成。输入部分进行数据增强,以提高样本质量和模型的泛化能力;主干部分进行特征提取,在Yolov8的基础上结合了CBAM、ECA、PSA注意力机制和AIFI特征交互模块,以提升特征提取效率和模型性能;分类头由卷积层和softmax函数组成,输出最终各个类别的概率值。用医生对关键器官(眼睛,脸部,头部,丘脑,脊柱)进行画框标注后的图像用于训练,以提高对枕前、枕后和枕横方位的分类准确性。 结果 实验结果表明,本文提出的模型在胎方位分类任务中表现出色,准确率(ACC)达到了0.984,PR曲线下面积即平均精确度(PR-AUC)为0.993,特征曲线下面积(ROC-AUC)为0.984,kappa一致性检验分数为0.974,该深度学习模型表现出了非常好的性能,模型预测结果和实际类别一致。 结论 本研究提出的多特征融合模型能够高效、准确地分类产时超声图像中的胎方位,为临床提供可靠的辅助工具。

关键词: 产时超声, 胎方位, 深度学习, 注意力机制

Abstract:

Objective To construct an intelligent analysis model for classifying fetal orientation during intrapartum ultrasound videos based on multi-feature fusion. Methods The proposed model consists of the Input, Backbone Network and Classification Head modules. The Input module carries out data augmentation to improve the sample quality and generalization ability of the model. The Backbone Network was responsible for feature extraction based on Yolov8 combined with CBAM, ECA, PSA attention mechanism and AIFI feature interaction module. The Classification Head consists of a convolutional layer and a softmax function to output the final probability value of each class. The images of the key structures (the eyes, face, head, thalamus, and spine) were annotated with frames by physicians for model training to improve the classification accuracy of the anterior occipital, posterior occipital, and transverse occipital orientations. Results The experimental results showed that the proposed model had excellent performance in the tire orientation classification task with the classification accuracy reaching 0.984, an area under the PR curve (average accuracy) of 0.993, and area under the ROC curve of 0.984, and a kappa consistency test score of 0.974. The prediction results by the deep learning model were highly consistent with the actual classification results. Conclusion The multi-feature fusion model proposed in this study can efficiently and accurately classify fetal orientation in intrapartum ultrasound videos.

Key words: intrapartum ultrasound, fetal orientation, deep learning, attention mechanism