南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (9): 1738-1751.doi: 10.12122/j.issn.1673-4254.2024.09.14

• • 上一篇    下一篇

基于MRI影像和临床参数特征融合的深度学习模型预测术前肝细胞癌的细胞角蛋白19状态

方威扬1,2(), 肖慧1, 王爽2, 林晓明2(), 陈超敏1()   

  1. 1.南方医科大学生物医学工程学院,广东 广州 510500
    2.广东顺德创新设计研究院,广东 佛山 528300
  • 收稿日期:2024-06-06 出版日期:2024-09-20 发布日期:2024-09-30
  • 通讯作者: 林晓明,陈超敏 E-mail:506486730@qq.com;xiaominglin@gidichina.org;15773839131@163.com
  • 作者简介:方威扬,在读硕士研究生,E-mail: 506486730@qq.com
  • 基金资助:
    国家重点研发计划项目(2023YFC2414502);广东省科技创新战略专项基金(2018FS05020102)

A deep learning model based on magnetic resonance imaging and clinical feature fusion for predicting preoperative cytokeratin 19 status in hepatocellular carcinoma

Weiyang FANG1,2(), Hui XIAO1, Shuang WANG2, Xiaoming LIN2(), Chaomin CHEN1()   

  1. 1.School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
    2.Guangdong Shunde Innovative Design Institute, Foshan 528300, China
  • Received:2024-06-06 Online:2024-09-20 Published:2024-09-30
  • Contact: Xiaoming LIN, Chaomin CHEN E-mail:506486730@qq.com;xiaominglin@gidichina.org;15773839131@163.com

摘要:

目的 探索并建立深度学习模型,验证MRI影像深度学习特征结合临床显著性特征在术前预测肝细胞癌(HCC)的细胞角蛋白19(CK19)状态上的可行性。 方法 收集116例已证实CK19状态的HCC患者数据进行回顾性实验。基于增强MRI影像的肝胆期(HBP)和扩散加权成像(DWI)序列,以及统计学分析筛选的与CK19状态显著相关的临床参数特征,建立了单序列多尺度特征融合模型(MSFF-IResnet)和多尺度多模态特征融合模型(MMFF-IResnet)。通过模型间的分类性能对比评估,突出深度学习模型对于术前预测HCC的CK19状态的有效性。 结果 多变量分析显示,升高的NLR值(P=0.029)和不完整的肿瘤包膜(P=0.028)是CK19表达的独立预测因子。多尺度特征融合和多模态特征融合方法改进后的深度学习模型均取得了优于传统机器学习模型和基线模型的分类结果,且最终的MMFF-IResnet表现出最佳的分类性能,其AUC为84.2%、准确度为80.6%,敏感度为80.1%,特异度为81.2%。 结论 本研究建立的基于MRI影像和临床参数的多尺度和多模态特征融合模型成功预测了HCC的CK19状态,验证了深度学习方法结合MRI影像和临床参数在术前预测CK19状态上的可行性。

关键词: 深度学习, MRI影像, 细胞角蛋白19, 多尺度特征融合, 多模态数据

Abstract:

Objective To establish a deep learning model for testing the feasibility of combining magnetic resonance imaging (MRI) deep learning features with clinical features for preoperative prediction of cytokeratin 19 (CK19) status of hepatocellular carcinoma (HCC). Methods A retrospective experiment was conducted based on the data of 116 HCC patients with confirmed CK19 status. A single sequence multi-scale feature fusion deep learning model (MSFF-IResnet) and a multi-scale and multi-modality feature fusion model (MMFF-IResnet) were established based on the hepatobiliary phase (HBP), diffusion weighted imaging (DWI) sequences of enhanced MRI images, and the clinical features significantly correlated with CK19 status. The classification performance of the models were evaluated to assess the effectiveness of the deep learning models for predicting CK19 status of HCC before surgery. Results Multivariate analysis showed that an increased neutrophil-to-lymphocyte ratio (P=0.029) and incomplete tumor capsule (P=0.028) were independent predictors of CK19 expression in HCC. The deep learning models improved by multi-scale feature fusion and multi-modality feature fusion methods achieved better classification results than the traditional machine learning models and baseline models, and the final MMFF-IResnet model showed the best classification performance with an AUC of 84.2%, an accuracy of 80.6%, a sensitivity of 80.1% and a specificity of 81.2%. Conclusion The multi-scale and multi-modality feature fusion model based on MRI and clinical parameters is capable of predicting CK19 status of HCC, demonstrating the feasibility of combining deep learning methods with MRI and clinical features for preoperative prediction of CK19 status.

Key words: deep learning, cytokeratin 19, magnetic resonance imaging, multi-scale feature fusion, multi-modality data