1 |
Zhang R, Wang ZL, Zhu GX, et al. Low-intensity pulsed ultrasound modulates RhoA/ROCK signaling of rat mandibular bone marrow mesenchymal stem cells to rescue their damaged cytoskeletal organization and cell biological function induced by radiation[J]. Stem Cells Int, 2020, 2020: 8863577-86.
|
2 |
De Felice F, Tombolini V, Musio D, et al. Radiation therapy and mandibular osteoradionecrosis: state of the art[J]. Curr Oncol Rep, 2020, 22(9): 89.
|
3 |
Gallego L, Junquera L, García-Consuegra L, et al. Regeneration of mandibular osteoradionecrosis with autologous cross-linked serum albumin scaffold[J]. Regen Med, 2020, 15(7): 1841-9.
|
4 |
Lajolo C, Rupe C, Gioco G, et al. Osteoradionecrosis of the jaws due to teeth extractions during and after radiotherapy: a systematic review[J]. Cancers, 2021, 13(22): 5798.
|
5 |
Jacobson AS, Buchbinder D, Hu K, et al. Paradigm shifts in the management of osteoradionecrosis of the mandible[J]. Oral Oncol, 2010, 46(11): 795-801.
|
6 |
Frankart AJ, Frankart MJ, Cervenka B, et al. Osteoradionecrosis: exposing the evidence not the bone[J]. Int J Radiat Oncol Biol Phys, 2021, 109(5): 1206-18.
|
7 |
Zhuang XM, Zhou B. Exosome secreted by human gingival fibroblasts in radiation therapy inhibits osteogenic differentiation of bone mesenchymal stem cells by transferring miR-23a[J]. Biomed Pharmacother, 2020, 131: 110672.
|
8 |
Gundestrup AK, Lynggaard CD, Forner L, et al. Mesenchymal stem cell therapy for osteoradionecrosis of the mandible: a systematic review of preclinical and human studies[J]. Stem Cell Rev Rep, 2020, 16(6): 1208-21.
|
9 |
Tenchov R, Sasso JM, Wang XM, et al. Exosomes-Nature's lipid nanoparticles, a rising star in drug delivery and diagnostics[J]. ACS Nano, 2022, 16(11): 17802-46.
|
10 |
Tang YF, Sun YQ, Zeng JK, et al. Exosomal miR-140-5p inhibits osteogenesis by targeting IGF1R and regulating the mTOR pathway in ossification of the posterior longitudinal ligament[J]. J Nanobiotechnology, 2022, 20(1): 452.
|
11 |
Zha Y, Li YW, Lin TY, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics, 2021, 11(1): 397-409.
|
12 |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977-90.
|
13 |
Ho YS, Yu MS, Lai CSW, et al. Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide neurotoxicity[J]. Brain Res, 2007, 1158: 123-34.
|
14 |
Sun WL, Shahrajabian MH, Cheng Q. Health benefits of wolfberry (Gou Qi Zi, Fructus barbarum L.) on the basis of ancient Chineseherbalism and Western modern medicine[J]. Avicenna J Phytomed, 2021, 11(2): 109-19.
|
15 |
Jiang SJ, Xiao X, Li J, et al. Lycium barbarum polysaccharide-glycoprotein ameliorates ionizing radiation-induced epithelial injury by regulating oxidative stress and ferroptosis via the Nrf2 pathway[J]. Free Radic Biol Med, 2023, 204: 84-94.
|
16 |
Wu JX, Chen T, Wan FQ, et al. Structural characterization of a polysaccharide from Lycium barbarum and its neuroprotective effect against β-amyloid peptide neurotoxicity[J]. Int J Biol Macromol, 2021, 176: 352-63.
|
17 |
Xiao Y, Chen WH, Chen RX, et al. Exosomal microRNA expression profiling analysis of the effects of Lycium barbarum polysaccharide on gestational diabetes mellitus mice[J]. Evid Based Complement Alternat Med, 2020, 2020: 2953502.
|
18 |
Chen H, Liu ZL, Yue K, et al. Immune microenvironment: novel perspectives on bone regeneration disorder in osteoradionecrosis of the jaws[J]. Cell Tissue Res, 2023, 392(2): 413-30.
|
19 |
Delanian S, Lefaix JL. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway[J]. Radiother Oncol, 2004, 73(2): 119-31.
|
20 |
Lyons A, Ghazali N. Osteoradionecrosis of the jaws: current understanding of its pathophysiology and treatment[J]. Br J Oral Maxillofac Surg, 2008, 46(8): 653-60.
|
21 |
Singh S, Kloss FR, Brunauer R, et al. Mesenchymal stem cells show radioresistance in vivo [J]. J Cell Mol Med, 2012, 16(4): 877-87.
|
22 |
De Felice F, Tombolini V, Musio D, et al. Radiation therapy and mandibular osteoradionecrosis: state of the art[J]. Curr Oncol Rep, 2020, 22(9): 89.
|
23 |
Jiang YH, Jahagirdar BN, Reinhardt RL, et al. Erratum: Pluripotency of mesenchymal stem cells derived from adult marrow[J]. Nature, 2007, 447: 880-1.
|
24 |
Li J, Yin P, Chen XY, et al. Effect of α2-macroglobulin in the early stage of jaw osteoradionecrosis[J]. Int J Oncol, 2020, 57(1): 213-22.
|
25 |
Song Q, Yong HM, Yang LL, et al. Lycium barbarum polysaccharide protects against osteonecrosis of femoral head via regulating Runx2 expression[J]. Injury, 2022, 53(4): 1361-7.
|
26 |
Liu JF, Li YC, Pu QS, et al. A polysaccharide from Lycium barbarum L.: structure and protective effects against oxidative stress and high-glucose-induced apoptosis in ARPE-19 cells[J]. Int J Biol Macromol, 2022, 201: 111-20.
|
27 |
Sun CX, Chen X, Yang SP, et al. LBP1C-2 from Lycium barbarum alleviated age-related bone loss by targeting BMPRIA/BMPRII/Noggin[J]. Carbohydr Polym, 2023, 310: 120725.
|
28 |
Lai S, Liu C, Liu C, et al. Lycium barbarum polysaccharide-glycoprotein promotes osteogenesis in hPDLSCs via ERK activation[J]. Oral Dis, 2023, 29(8): 3503-13.
|
29 |
Zha Y, Li YW, Lin TY, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics, 2021, 11(1): 397-409.
|
30 |
Zhao ZK, Yu HL, Liu B, et al. Antioxidative mechanism of Lycium barbarum polysaccharides promotes repair and regeneration following cavernous nerve injury[J]. Neural Regen Res, 2016, 11(8): 1312-21.
|