1 |
Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2): 117.
|
2 |
Garon EB, Hellmann MD, Rizvi NA, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study[J]. J Clin Oncol, 2019, 37(28): 2518-27.
|
3 |
Zhang YY, Zhang ZM. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol, 2020, 17(8): 807-21.
|
4 |
Yi M, Jiao DC, Xu HX, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors[J]. Mol Cancer, 2018, 17(1): 129.
|
5 |
Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy[J]. Nat Rev Cancer, 2019, 19(3): 133-50.
|
6 |
Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-66.
|
7 |
Wculek SK, Cueto FJ, Mujal AM, et al. Dendritic cells in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2020, 20(1): 7-24.
|
8 |
Gardner A, Ruffell B. Dendritic cells and cancer immunity[J]. Trends Immunol, 2016, 37(12): 855-65.
|
9 |
Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited[J]. Curr Opin Immunol, 2017, 45: 43-51.
|
10 |
Cancel JC, Crozat K, Dalod M, et al. Are conventional type 1 dendritic cells critical for protective antitumor immunity and how?[J]. Front Immunol, 2019, 10: 9.
|
11 |
Böttcher JP, Sousa CRE. The role of type 1 conventional dendritic cells in cancer immunity[J]. Trends Cancer, 2018, 4(11): 784-92.
|
12 |
Gunn MD, Kyuwa S, Tam C, et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization[J]. J Exp Med, 1999, 189(3): 451-60.
|
13 |
Viola A, Sarukhan A, Bronte V, et al. The pros and cons of chemokines in tumor immunology[J]. Trends Immunol, 2012, 33(10): 496-504.
|
14 |
Nagarsheth N, Wicha MS, Zou WP. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy[J]. Nat Rev Immunol, 2017, 17(9): 559-72.
|
15 |
Gu Q, Zhou SF, Chen C, et al. CCL19: a novel prognostic chemokine modulates the tumor immune microenvironment and outcomes of cancers[J]. Aging, 2023, 15(21): 12369-87.
|
16 |
Maier B, Leader AM, Chen ST, et al. A conserved dendritic-cell regulatory program limits antitumour immunity[J]. Nature, 2020, 580(7802): 257-62.
|
17 |
Smalley I, Chen ZH, Phadke M, et al. Single-cell characterization of the immune microenvironment of melanoma brain and lepto-meningeal metastases[J]. Clin Cancer Res, 2021, 27(14): 4109-25.
|
18 |
Chen YP, Yin JH, Li WF, et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma[J]. Cell Res, 2020, 30(11): 1024-42.
|
19 |
Guo QQ, Liu LW, Chen ZL, et al. Current treatments for non-small cell lung cancer[J]. Front Oncol, 2022, 12: 945102.
|
20 |
Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in non-small cell lung cancer: facts and hopes[J]. Clin Cancer Res, 2019, 25(15): 4592-602.
|
21 |
Collin M, Bigley V. Human dendritic cell subsets: an update[J]. Immunology, 2018, 154(1): 3-20.
|
22 |
Garris CS, Arlauckas SP, Kohler RH, et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12[J]. Immunity, 2022, 55(9): 1749.
|
23 |
Salmon H, Idoyaga J, Rahman A, et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition[J]. Immunity, 2016, 44(4): 924-38.
|
24 |
Gowhari Shabgah A, Haleem Al-Qaim Z, Markov A, et al. Chemokine CXCL14; a double-edged sword in cancer development[J]. Int Immunopharmacol, 2021, 97: 107681.
|
25 |
Gowhari Shabgah A, Qasim MT, Mojtaba Mostafavi S, et al. CXC chemokine ligand 16: a Swiss army knife chemokine in cancer[J]. Expert Rev Mol Med, 2021, 23: e4.
|
26 |
Artinger M, Matti C, Gerken OJ, et al. A versatile toolkit for semi-automated production of fluorescent chemokines to study CCR7 expression and functions[J]. Int J Mol Sci, 2021, 22(8): 4158.
|
27 |
Hillinger S, Yang SC, Zhu L, et al. EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-gamma-dependent antitumor responses in a lung cancer model[J]. J Immunol, 2003, 171(12): 6457-65.
|
28 |
Lu J, Ma JJ, Cai W, et al. CC motif chemokine ligand 19 suppressed colorectal cancer in vivo accompanied by an increase in IL-12 and IFN-γ[J]. Biomedecine Pharmacother, 2015, 69: 374-9.
|
29 |
Liu XX, Wang BL, Li YY, et al. Powerful anticolon tumor effect of targeted gene immunotherapy using folate-modified nanoparticle delivery of CCL19 to activate the immune system[J]. ACS Cent Sci, 2019, 5(2): 277-89.
|
30 |
Cheng HW, Onder L, Cupovic J, et al. CCL19-producing fibroblastic stromal cells restrain lung carcinoma growth by promoting local antitumor T-cell responses[J]. J Allergy Clin Immunol, 2018, 142(4): 1257-71.e4.
|
31 |
Iida Y, Yoshikawa R, Murata A, et al. Local injection of CCL19-expressing mesenchymal stem cells augments the therapeutic efficacy of anti-PD-L1 antibody by promoting infiltration of immune cells[J]. J Immunother Cancer, 2020, 8(2): e000582.
|
32 |
Li P, Liu FY, Sun LY, et al. Chemokine receptor 7 promotes cell migration and adhesion in metastatic squamous cell carcinoma of the head and neck by activating integrin αvβ3[J]. Int J Mol Med, 2011, 27(5): 679-87.
|