南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (8): 1718-1731.doi: 10.12122/j.issn.1673-4254.2025.08.16
• • 上一篇
张兆君1(), 吴琼1, 谢苗苗1, 叶洳吟1, 耿晨晨1, 石纪雯1, 杨清玲1, 王文锐1, 石玉荣2(
)
收稿日期:
2024-12-24
出版日期:
2025-08-20
发布日期:
2025-09-05
通讯作者:
石玉荣
E-mail:zzj17318530948@163.com;shiyr@126.com
作者简介:
张兆君,在读硕士研究生,E-mail: zzj17318530948@163.com
基金资助:
Zhaojun ZHANG1(), Qiong WU1, Miaomiao XIE1, Ruyin YE1, Chenchen GENG1, Jiwen SHI1, Qingling YANG1, Wenrui WANG1, Yurong SHI2(
)
Received:
2024-12-24
Online:
2025-08-20
Published:
2025-09-05
Contact:
Yurong SHI
E-mail:zzj17318530948@163.com;shiyr@126.com
摘要:
目的 研究层状双氢氧化物(LDH)负载si-NEAT1对乳腺癌紫杉醇耐药及肿瘤相关巨噬细胞极化作用的分子机制。 方法 qRT-PCR、Western blotting检测乳腺癌亲本细胞(SKBR3)和紫杉醇耐药乳腺癌细胞(SKBR3-PR)中LncRNA NEAT1、miR-133b和PD-L1的表达;设置实验分组Control、si-NEAT1、miR-133b mimics,qRT-PCR、Western blotting检测SKBR3-PR中MRP、BCRP和PD-L1的表达,划痕、Transwell检测增殖迁移能力,流式细胞术检测细胞凋亡;采用si-NEAT1和miR-133b inhibitor进行Rescue实验;肿瘤细胞上清(CM)与巨噬细胞共培养,设置实验分组PBS、IL-4、PBS+SKBR3 CM、PBS+SKBR3-PR CM、IL-4+PR si-N CM,qRT-PCR检测M2型巨噬细胞标志物Arg-1、CD163、IL-10与miR-133b、PD-L1的表达,免疫荧光检测CD163与CD206;构建LDH@si-NEAT1纳米载体转染肿瘤细胞,设置分组Control、LDH、游离si-NEAT1、LDH@si-NEAT1,qRT-PCR、Western blotting、免疫荧光检测MRP、BCRP和PD-L1的表达,划痕、Transwell实验检测细胞增殖迁移能力,流式细胞术检测细胞凋亡;LDH@si-NEAT1 CM与巨噬细胞共培养,设置实验分组PBS、IL-4、IL-4+PR@ CM,qRT-PCR、免疫荧光检测Arg-1、CD163、IL-10及miR-133b和PD-L1的表达。 结果 相较于亲本乳腺癌细胞,紫杉醇耐药乳腺癌细胞中NEAT1表达上调、miR-133b下调和PD-L1上调(P<0.05);si-NEAT1和 miR-133b mimics处理分别抑制了紫杉醇耐药乳腺癌细胞的活性,促进了细胞凋亡(P<0.01),MRP、BCRP表达下调(P<0.05);敲低NEAT1,miR-133b表达上调,PD-L1表达下调(P<0.01),MRP、BCRP表达下调(P<0.001);巨噬细胞M2型极化标志物Arg-1、CD163、IL-10在SKBR3-PR CM与巨噬细胞共培养后表达上调(P<0.05),而si-NEAT1 CM与巨噬细胞共培养后下调(P<0.05);LDH@si-NEAT1作用肿瘤细胞,迁移侵袭能力下调,凋亡增加(P<0.01),MRP和BCRP以及PD-L1蛋白的表达降低(P<0.05),LDH@ si-NEAT1CM作用巨噬细胞Arg-1、CD163、IL-10表达下调,miR-133b上调,PD-L1下调(P<0.01)。 结论 LDH@si-NEAT1通过靶向miR-133b/PD-L1轴,调控乳腺癌细胞紫杉醇耐药与巨噬细胞极化。
张兆君, 吴琼, 谢苗苗, 叶洳吟, 耿晨晨, 石纪雯, 杨清玲, 王文锐, 石玉荣. 层状双氢氧化物负载si-NEAT1通过miR-133b/PD-L1轴调控乳腺癌紫杉醇耐药及巨噬细胞极化[J]. 南方医科大学学报, 2025, 45(8): 1718-1731.
Zhaojun ZHANG, Qiong WU, Miaomiao XIE, Ruyin YE, Chenchen GENG, Jiwen SHI, Qingling YANG, Wenrui WANG, Yurong SHI. Layered double hydroxide-loaded si-NEAT1 regulates paclitaxel resistance and tumor-associated macrophage polarization in breast cancer by targeting miR-133b/PD-L1[J]. Journal of Southern Medical University, 2025, 45(8): 1718-1731.
Gene | Forward primer | Reverse primer |
---|---|---|
GAPDH | CAGCCTCAAGATCATCAGCA | TGTGGTCATGAGTCCTTCCA |
NEAT1 | CTTCCTCCCTTTAACTTATCCATTCAC | CTCTTCCTCCACCATTACCAACAATAC |
miR-133b | TCCCCTTCAACCAGCTAA | Universal primer |
PD-L1 | GTAAGACCACCACCACCAATTC | AGTTGTTGTGTTGATTCTCAGTGTG |
U6 | CTCGCTTCGGCAGCACA | AACGCTTCACGAATTTGCGT |
Arg-1 | GGACCTGCCCTTTGCTGACATC | TCTTCTTGACTTCTGCCACCTTGC |
CD163 | ACAATGAAGATGCTGGCGTGAC | ACAATGAAGATGCTGGCGTGAC |
IL-10 | ACCAAGACCCAGACATCAAGGC | AGGCATTCTTCACCTGCTCCAC |
CD68 | CCCACCTGCTTCTCTCATTCCC | TTGTACTCCACCGCCATGTAGC |
表1 PCR引物序列表
Tab.1 PCR primer sequences
Gene | Forward primer | Reverse primer |
---|---|---|
GAPDH | CAGCCTCAAGATCATCAGCA | TGTGGTCATGAGTCCTTCCA |
NEAT1 | CTTCCTCCCTTTAACTTATCCATTCAC | CTCTTCCTCCACCATTACCAACAATAC |
miR-133b | TCCCCTTCAACCAGCTAA | Universal primer |
PD-L1 | GTAAGACCACCACCACCAATTC | AGTTGTTGTGTTGATTCTCAGTGTG |
U6 | CTCGCTTCGGCAGCACA | AACGCTTCACGAATTTGCGT |
Arg-1 | GGACCTGCCCTTTGCTGACATC | TCTTCTTGACTTCTGCCACCTTGC |
CD163 | ACAATGAAGATGCTGGCGTGAC | ACAATGAAGATGCTGGCGTGAC |
IL-10 | ACCAAGACCCAGACATCAAGGC | AGGCATTCTTCACCTGCTCCAC |
CD68 | CCCACCTGCTTCTCTCATTCCC | TTGTACTCCACCGCCATGTAGC |
图1 LncRNA NEAT1调控乳腺癌紫杉醇耐药
Fig.1 LncRNA NEAT1 regulates paclitaxel resistance of breast cancer cells. A, B: Western blotting and immunofluorescence detection of expression of drug resistance-related proteins in resistant breast cancer cells (scale bar=50 μm). C: qRT-PCR technology for detecting the expression of NEAT1. D: Western blotting for detecting drug resistance of the cells. E: Flow cytometry for analyzing apoptosis rate of the resistant breast cancer cells. F, G: Scratch and Transwell assays for assessing the migration and invasion capabilities of resistant cells (scale bar=200 μm). Scratch and Transwell assays for assessing migration and invasion capabilities of resistant breast cancer cells. *P<0.05, **P<0.01, ***P<0.001.
图2 LncRNA NEAT1通过调控miR-133b影响乳腺癌细胞耐药
Fig.2 LncRNA NEAT1 affects drug resistance in breast cancer cells by regulating miR-133b. A, B: qRT-PCR for detecting the expression of miR-133b. C: Western blotting for detecting expressions of drug resistance proteins. D: Immunofluorescence for detecting the expression of resistance proteins. E, F: Scratch and Transwell assays for assessing the migration and invasiveness of resistant cells. G: Flow cytometry for detecting apoptosis rate of resistant cells. *P<0.05, **P<0.01, ***P<0.001.
图3 LncRNA NEAT1调控miR-133b靶向PD-L1影响乳腺癌紫杉醇耐药
Fig.3 LncRNA NEAT1 regulates miR-133b to target PD-L1 and affect paclitaxel resistance in breast cancer cells. A, B: qRT-PCR for detecting the expression of PD-L1. C: Bioinformatics analysis reveals a regulatory relationship between miR-133b and PD-L1. D, E: Western blotting for detecting the expression of PD-L1. F: Western blotting for detecting the expressions of MRP, BCRP, and PD-L1 in drug-resistant breast cancer cells. *P<0.05, **P<0.01, ***P<0.001.
图4 LncRNA NEAT1通过调控miR-133b靶向PD-L1影响乳腺癌紫杉醇耐药
Fig.4 LncRNA NEAT1 regulates miR-133b to target PD-L1 and affect paclitaxel resistance in breast cancer cells. A: qRT-PCR for detecting the expression of PD-L1. B: Immunofluorescence for detecting the expression of BCRP in resistant cells (scale bar=50 μm). C, D: Scratch and Transwell assays for assessing migration and invasion capabilities of resistant cells (scale bar=200 μm). E: Flow cytometry for detecting apoptosis rate of the resistant cells. *P<0.05, **P<0.01, ***P<0.001.
图5 耐药细胞上清调控TAMs 极化
Fig.5 Resistance cell supernatant can regulate the polarization of tumor-associated macrophages. A: Morphology of Thp-1 and M0-type macrophages (scale bar=200 μm ). B: qRT-PCR for detecting the expression of CD68. C, D: qRT-PCR for detecting the expression of M2 macrophage polarization markers Arg-1, CD163, and IL-10. E: Immunofluorescence staining for detecting M2 polarization markers CD163 and CD206 in the macrophages (scale bar=50 μm). F: Timer2.0 website predicts that the expression of NEAT1 is positively correlated with macrophage infiltration. *P<0.05, **P<0.01, ***P<0.001.
图6 LncRNA NEAT1调控TAMs 极化
Fig.6 LncRNA NEAT1 regulates polarization of tumor-associated macrophages in breast cancer. A, D: qRT-PCR for detecting the expressions of NEAT1, miR-133b, and PD-L1, respectively. B, C: qRT-PCR and Immunofluorescence for detecting M2 macrophage polarization markers (scale bar=50 μm). E: Western blotting for detecting the expression of PD-L1 in the macrophages. *P<0.05, **P<0.01, ***P<0.001.
图7 LDH负载si-NEAT1纳米材料的构建
Fig.7 Construction of LDH Nanoparticles Loaded with si-NEAT1. A: Synthesis and loading of LDH. B: Agarose gel electrophoresis to determine the optimal loading ratio of LDH with si-NEAT1. C, D: Malvern particle size analysis for assessing particle size distribution and zeta potential of LDH and LDH@si-NEAT1. E: Transmission electron microscopy images of LDH and LDH@si-NEAT1. F, G: X-ray diffraction and UV-Vis spectra of LDH and LDH@si-NEAT1.
图8 表征LDH@ si-NEAT1实验
Fig.8 LDH@si-NEAT1 characterization experiments. A: Uptake experiment of LDH@si-NEAT1 (Original magnification: ×200). B: Confocal microscopy to detect lysosomal escape of LDH@si-NEAT1 (×200). C: Acridine orange staining to test lysosomal membrane permeability (×600).
图9 LDH@si-NEAT1调控乳腺癌细胞耐药
Fig.9 LDH@si-NEAT1 regulate paclitaxel resistance in breast cancer cells. A, B: Scratch and Transwell assays to assess the migration and invasion capabilities of drug-resistant cells. C: Flow cytometry for detecting apoptosis rate of drug-resistant cells. D: qRT-PCR for detecting expressions of miR-133b and PD-L1, respectively. E: Western blotting for detecting expressions of drug resistance proteins and PD-L1. *P<0.05, ***P<0.001.
图10 LDH@si-NEAT1调控巨噬细胞极化状态
Fig.10 LDH@si-NEAT1 regulate M2 polarization state. A: Immunofluorescence staining for detecting expressions of drug resistance proteins (scale bar=50 μm). B, C: qRT-PCR and immunofluorescence staining for detecting M2 macrophage polarization markers (scale bar=50 μm). D: qRT-PCR of the expressions of miR-133b and PD-L1. E: Western blotting of the expression of PD-L1 in macrophages. *P<0.05, **P<0.01, ***P<0.001.
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-63. doi:10.3322/caac.21834 |
[2] | 石英香, 王 婧, 石玉荣, 等. 乳腺癌紫杉醇耐药机制的研究进展[J]. 齐齐哈尔医学院学报, 2022, 43(6): 557-61. |
[3] | Abu Samaan TM, Samec M, Liskova A, et al. Paclitaxel's mechanistic and clinical effects on breast cancer[J]. Biomolecules, 2019, 9(12): 789. doi:10.3390/biom9120789 |
[4] | Ghafouri-Fard S, Taheri M. Nuclear enriched abundant transcript 1 (NEAT1): a long non-coding RNA with diverse functions in tumorigenesis[J]. Biomed Pharmacother, 2019, 111: 51-9. doi:10.1016/j.biopha.2018.12.070 |
[5] | Wang C, Duan YJ, Duan G, et al. Stress induces dynamic, cytotoxicity-antagonizing TDP-43 nuclear bodies via paraspeckle LncRNA NEAT1-mediated liquid-liquid phase separation[J]. Mol Cell, 2020, 79(3): 443-58.e7. doi:10.1016/j.molcel.2020.06.019 |
[6] | Wei XB, Jiang WQ, Zeng JH, et al. Exosome-derived lncRNA NEAT1 exacerbates sepsis-associated encephalopathy by promoting ferroptosis through regulating miR-9-5p/TFRC and GOT1 axis[J]. Mol Neurobiol, 2022, 59(3): 1954-69. doi:10.1007/s12035-022-02738-1 |
[7] | Luo X, Wei QL, Jiang XY, et al. CSTF3 contributes to platinum resistance in ovarian cancer through alternative polyadenylation of lncRNA NEAT1 and generating the short isoform NEAT1_1[J]. Cell Death Dis, 2024, 15(6): 432. doi:10.1038/s41419-024-06816-1 |
[8] | Puccio N, Manzotti G, Mereu E, et al. Combinatorial strategies targeting NEAT1 and AURKA as new potential therapeutic options for multiple myeloma[J]. Haematologica, 2024, 109(12): 4040-55. |
[9] | Li MY, Yang YH, Xiong LT, et al. Metabolism, metabolites, and macrophages in cancer[J]. J Hematol Oncol, 2023, 16(1): 80. doi:10.1186/s13045-023-01478-6 |
[10] | Borisenko GG, Matsura T, Liu SX, et al. Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells: existence of a threshold[J]. Arch Biochem Biophys, 2003, 413(1): 41-52. doi:10.1016/s0003-9861(03)00083-3 |
[11] | Liu DL, Wei YH, Liu YD, et al. The long non-coding RNA NEAT1/miR-224-5p/IL-33 axis modulates macrophage M2a polarization and A1 astrocyte activation[J]. Mol Neurobiol, 2021, 58(9): 4506-19. doi:10.1007/s12035-021-02405-x |
[12] | 彭 威, 徐 旸, 王文锐. 层状双氢氧化物作为基因药物递送载体的研究进展[J]. 中国医药工业杂志, 2020, 51(10): 1243-53. doi:10.16522/j.cnki.cjph.2020.10.003 |
[13] | Li L, Soyhan I, Warszawik E, et al. Layered double hydroxides: recent progress and promising perspectives toward biomedical applications[J]. Adv Sci (Weinh), 2024, 11(20): e2306035. doi:10.1002/advs.202306035 |
[14] | 徐惠敏, 史竞彤, 孙轶华. 肿瘤相关巨噬细胞的极化方式及其对乳腺癌进展的影响[J]. 现代肿瘤医学, 2021, 29(22): 4049-54. doi:10.3969/j.issn.1672-4992.2021.22.037 |
[15] | Mou SJ, Yang PF, Liu YP, et al. BCLAF1 promotes cell proliferation, invasion and drug-resistance though targeting lncRNA NEAT1 in hepatocellular carcinoma[J]. Life Sci, 2020, 242: 117177. doi:10.1016/j.lfs.2019.117177 |
[16] | Wei XY, Tao S, Mao HL, et al. Exosomal lncRNA NEAT1 induces paclitaxel resistance in breast cancer cells and promotes cell migration by targeting miR-133b[J]. Gene, 2023, 860: 147230. doi:10.1016/j.gene.2023.147230 |
[17] | Long F, Li X, Pan JY, et al. The role of lncRNA NEAT1 in human cancer chemoresistance[J]. Cancer Cell Int, 2024, 24(1): 236. doi:10.1186/s12935-024-03426-x |
[18] | Wang JY, Zhang JH, Liu H, et al. N6-methyladenosine reader hnRNPA2B1 recognizes and stabilizes NEAT1 to confer chemoresistance in gastric cancer[J]. Cancer Commun (Lond), 2024, 44(4): 469-90. doi:10.1002/cac2.12534 |
[19] | Zhang SJ, Kim EJ, Huang JF, et al. NEAT1 repression by MED12 creates chemosensitivity in p53 wild-type breast cancer cells[J]. FEBS J, 2024, 291(9): 1909-24. doi:10.1111/febs.17097 |
[20] | Zhen SM, Jia YL, Zhao Y, et al. NEAT1_1 confers gefitinib resistance in lung adenocarcinoma through promoting AKR1C1-mediated ferroptosis defence[J]. Cell Death Discov, 2024, 10(1): 131. doi:10.1038/s41420-024-01892-w |
[21] | Wang XW, Xu Y, Zhu YC, et al. LncRNA NEAT1 promotes extracellular matrix accumulation and epithelial-to-mesenchymal transition by targeting miR-27b-3p and ZEB1 in diabetic nephropathy[J]. J Cell Physiol, 2019, 234(8): 12926-33. doi:10.1002/jcp.27959 |
[22] | Lin SP, Wen ZK, Li SX, et al. LncRNA Neat1 promotes the macrophage inflammatory response and acts as a therapeutic target in titanium particle-induced osteolysis[J]. Acta Biomater, 2022, 142: 345-60. doi:10.1016/j.actbio.2022.02.007 |
[23] | Wei FF, Yan ZY, Zhang XM, et al. LncRNA-NEAT1 inhibits the occurrence and development of pancreatic cancer through spongy miR-146b-5p/traf6[J]. Biotechnol Genet Eng Rev, 2024, 40(2): 1094-112. doi:10.1080/02648725.2023.2192059 |
[24] | Geng F, Jia WC, Li T, et al. Knockdown of lncRNA NEAT1 suppresses proliferation and migration, and induces apoptosis of cervical cancer cells by regulating the miR-377/FGFR1 axis[J]. Mol Med Rep, 2022, 25(1): 10. doi:10.3892/mmr.2021.12526 |
[25] | Zhang K, Zhou H, Yan B, et al. TUG1/miR-133b/CXCR4 axis regulates cisplatin resistance in human tongue squamous cell carcinoma[J]. Cancer Cell Int, 2020, 20: 148. doi:10.1186/s12935-020-01224-9 |
[26] | Li PF, Sun Q, Bai SP, et al. Combination of the cuproptosis inducer disulfiram and anti-PD-L1 abolishes NSCLC resistance by ATP7B to regulate the HIF-1 signaling pathway[J]. Int J Mol Med, 2024, 53(2): 19. doi:10.3892/ijmm.2023.5343 |
[27] | Rabiee N, Bagherzadeh M, Ghadiri AM, et al. ZnAl nano layered double hydroxides for dual functional CRISPR/Cas9 delivery and enhanced green fluorescence protein biosensor[J]. Sci Rep, 2020, 10(1): 20672. doi:10.1038/s41598-020-77809-1 |
[28] | Lee J, Seo HS, Park W, et al. Biofunctional layered double hydroxide nanohybrids for cancer therapy[J]. Materials (Basel), 2022, 15(22): 7977. doi:10.3390/ma15227977 |
[29] | Zhang SW, Pang SY, Pei WH, et al. Layered double hydroxide-loaded miR-30a for the treatment of breast cancer in vitro and in vivo [J]. ACS Omega, 2023, 8(21): 18435-48. doi:10.1021/acsomega.2c07866 |
[30] | Li L, Qian YJ, Sun LY, et al. Albumin-stabilized layered double hydroxide nanoparticles synergized combination chemotherapy for colorectal cancer treatment[J]. Nanomedicine, 2021, 34: 102369. doi:10.1016/j.nano.2021.102369 |
[31] | Chang MY, Wang M, Liu B, et al. A cancer nanovaccine based on an FeAl-layered double hydroxide framework for reactive oxygen species-augmented metalloimmunotherapy[J]. ACS Nano, 2024, 18(11): 8143-56. doi:10.1021/acsnano.3c11960 |
[1] | 马思源, 张博超, 浦春. Circ_0000437通过靶向let-7b-5p/CTPS1轴促进乳腺癌细胞的增殖、侵袭、迁移及上皮间质转化[J]. 南方医科大学学报, 2025, 45(8): 1682-1696. |
[2] | 李嘉豪, 冼瑞婷, 李荣. 下调ACADM介导的脂毒性抑制雌激素受体阳性乳腺癌细胞的侵袭与转移[J]. 南方医科大学学报, 2025, 45(6): 1163-1173. |
[3] | 陈镝, 吕莹, 郭怡欣, 张怡荣, 王蕊璇, 周小若, 陈雨欣, 武晓慧. 双氢青蒿素可显著增强阿霉素诱导的三阴性乳腺癌细胞凋亡:基于负向调控STAT3/HIF-1α通路[J]. 南方医科大学学报, 2025, 45(2): 254-260. |
[4] | 褚乔, 王小娜, 续佳颖, 彭荟林, 赵裕琳, 张静, 陆国玉, 王恺. 白头翁皂苷D通过多靶点和多途径抑制三阴性乳腺癌侵袭转移[J]. 南方医科大学学报, 2025, 45(1): 150-161. |
[5] | 薛良军, 谈秋瑜, 许静文, 冯璐, 李文锦, 颜亮, 李玉磊. MiR-6838-5p过表达下调DDR1基因表达抑制乳腺癌MCF-7细胞的增殖[J]. 南方医科大学学报, 2024, 44(9): 1677-1684. |
[6] | 欧阳明子, 崔佳琦, 王慧, 梁正, 皮大锦, 陈利国, 陈前军, 吴迎朝. 开心散通过减轻前额叶皮质铁死亡缓解小鼠的阿霉素化疗性抑郁[J]. 南方医科大学学报, 2024, 44(8): 1441-1449. |
[7] | 房锦存, 刘立威, 林俊豪, 陈逢生. CDHR2过表达通过抑制PI3K/Akt通路抑制乳腺癌细胞增殖[J]. 南方医科大学学报, 2024, 44(6): 1117-1125. |
[8] | 崔芝, 马萃娇, 王倩茹, 陈金豪, 严子阳, 杨建林, 吕亚丰, 曹春雨. 表达 TGF-βⅡ受体的腺相关病毒载体抑制小鼠三阴性乳腺癌4T1细胞的增殖和肺转移[J]. 南方医科大学学报, 2024, 44(5): 818-826. |
[9] | 陈守峰, 张舒超, 樊伟林, 孙 巍, 刘贝贝, 刘建民, 郭园园. 吡非尼酮联合PD-L1抑制剂抑制小鼠异位膀胱肿瘤的生长[J]. 南方医科大学学报, 2024, 44(2): 210-216. |
[10] | 曾佑琴, 陈思雨, 刘燕, 刘奕彤, 张玲, 夏姣, 吴心语, 魏常友, 冷平. AKBA联合阿霉素抑制三阴性乳腺癌细胞MDA-MB-231的增殖、迁移和裸鼠移植瘤生长[J]. 南方医科大学学报, 2024, 44(12): 2449-2460. |
[11] | 张晋弘, 刘昕, 刘健. PHPS1通过调控口腔鳞状细胞癌内ROS/SHP-2/AMPK活性促进PD-L1丝氨酸磷酸化进而加速肿瘤凋亡[J]. 南方医科大学学报, 2024, 44(12): 2469-2476. |
[12] | 徐梦歧, 石宇彤, 刘俊平, 吴敏敏, 张凤梅, 何志强, 唐 敏. JAG1影响单核-巨噬细胞重塑三阴性乳腺癌转移前微环境:基于外泌体中的LncRNA MALAT1[J]. 南方医科大学学报, 2023, 43(9): 1525-1535. |
[13] | 许家铭, 林 龙, 陈琼慧, 李 兰. Hsa-miR-148a-3p通过下调DUSP1基因促进乳腺癌细胞的恶性行为[J]. 南方医科大学学报, 2023, 43(9): 1515-1524. |
[14] | 王 丽, 严志锐, 夏耀雄. 抑制RAB27a能够抑制三阴乳腺癌细胞的增殖、侵袭和粘附[J]. 南方医科大学学报, 2023, 43(4): 560-567. |
[15] | 广东省医疗行业协会乳腺病整形修复管理分会. 乳腺手术的关键操作细节标准:广东省医疗行业协会专家共识[J]. 南方医科大学学报, 2023, 43(10): 1827-1832. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||