南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (8): 1441-1449.doi: 10.12122/j.issn.1673-4254.2024.08.02
• • 上一篇
欧阳明子1(), 崔佳琦1, 王慧1, 梁正1, 皮大锦1, 陈利国1, 陈前军2,3,4(), 吴迎朝1,2,3,4,5()
收稿日期:
2024-05-09
出版日期:
2024-08-20
发布日期:
2024-09-06
通讯作者:
陈前军,吴迎朝
E-mail:mingzioy@jnu.edu.cn;cqj55@163.com;yc1996@stu2020.jnu.edu.cn
作者简介:
欧阳明子,博士,副教授、副主任医师,硕士生导师,E-mail: mingzioy@jnu.edu.cn
基金资助:
Mingzi OUYANG1(), Jiaqi CUI1, Hui WANG1, Zheng LIANG1, Dajin PI1, Liguo CHEN1, Qianjun CHEN2,3,4(), Yingchao WU1,2,3,4,5()
Received:
2024-05-09
Online:
2024-08-20
Published:
2024-09-06
Contact:
Qianjun CHEN, Yingchao WU
E-mail:mingzioy@jnu.edu.cn;cqj55@163.com;yc1996@stu2020.jnu.edu.cn
Supported by:
摘要:
目的 明确中药复方开心散缓解乳腺癌阿霉素化疗性抑郁的疗效,并分析其药理机制。 方法 将40只雌性BALB/c小鼠通过原位注射4T1细胞建立乳腺癌小鼠模型,将小鼠随机分为对照组、模型组、开心散低剂量组和开心散高剂量组,10只/组。通过旷场试验和高架十字迷宫实验行为学分析、抑郁相关因子血清学检测、转录组学分析、透射电镜病理分析和铁死亡相关因子检测分析阿霉素诱导的化疗性抑郁产生的病因以及开心散的作用机制。利用SH-SY5Y细胞系构建体外模型并使用铁死亡抑制剂Fer-1进行阳性对照,验证动物实验结果。 结果 开心散显著逆转阿霉素化疗所致的抑郁样行为(P<0.001)、逆转抑郁相关血清学的改变(P<0.05);转录组学结果显示,开心散缓解化疗性抑郁与调控前额叶皮质组织氧化应激、脂质代谢和铁离子结合等过程有关;病理学分析、铁死亡相关因子检测结果显示,开心散能减轻阿霉素化疗所致的前额叶皮质组织铁死亡(P<0.01)。体外实验结果也显示,开心散含药血清和铁死亡抑制剂均能逆转阿霉素诱导的神经细胞铁死亡(P<0.001)。 结论 开心散通过减轻乳腺癌阿霉素化疗所致的大脑前额叶皮质组织铁死亡,进而缓解化疗性抑郁。
欧阳明子, 崔佳琦, 王慧, 梁正, 皮大锦, 陈利国, 陈前军, 吴迎朝. 开心散通过减轻前额叶皮质铁死亡缓解小鼠的阿霉素化疗性抑郁[J]. 南方医科大学学报, 2024, 44(8): 1441-1449.
Mingzi OUYANG, Jiaqi CUI, Hui WANG, Zheng LIANG, Dajin PI, Liguo CHEN, Qianjun CHEN, Yingchao WU. Kaixinsan alleviates adriamycin-induced depression-like behaviors in mice by reducing ferroptosis in the prefrontal cortex[J]. Journal of Southern Medical University, 2024, 44(8): 1441-1449.
图1 开心散缓解阿霉素诱导行为学改变
Fig.1 KXS alleviates depression-like behaviors in breast cancer-bearing mice receiving adriamycin treatment. A: Path trace and path heat map in open field test. B: Total distance in open field test. *P<0.05, ***P<0.001 vs control group; ###P<0.001 vs model group; &&P<0.01, &&&P<0.001 vs KXS-L group (n=10).
图2 开心散对阿霉素引起的抑郁相关血清学改变的影响
Fig.2 Effect of KXS on depression-related serological changes induced by adriamycin in breast cancer-bearing mice. The diagrams show comparisons of serum CRH (A), ACTH (B), GC (C), CORT (D), 5-HT (E), NPY (F), NE (G) and BDNF (H) contents among the 4 groups. *P<0.05, **P<0.01, ***P<0.001 vs control group; #P<0.05, ##P<0.01, ###P<0.001 vs model group; &P<0.05, &&P<0.01, &&&P<0.001 vs KXS-L group (n=3).
图3 开心散缓解阿霉素诱导的抑郁作用靶点分析
Fig.3 Target analysis of KXS in alleviating adriamycin-induced depression. A: PCA plot of RNA-seq gene expression. B, C: Volcano plot of differentially expressed genes (DEGs) identified by RNA-seq. D: Venn diagram of the DGEs. E: Cluster heatmap of the common DGEs. F: PPI network of the common DGEs. G: Common DGEs interaction network degree value plot. The top 10 common DGEs are shown on the left.
图4 开心散缓解阿霉素诱导的抑郁靶点富集分析
Fig.4 Target enrichment analysis of KXS in alleviating adriamycin-induced depression. A: GO enrichment analysis of the common DGEs. From top to bottom: molecular function (MF), cellular component (CC), and biological process (BP). B: KEGG pathway enrichment analysis of the common DGEs. C: Reactome pathway enrichment analysis of the common DGEs.
图5 开心散抑制阿霉素引起的前额叶皮质组织铁死亡
Fig.5 KXS inhibits adriamycin-induced ferroptosis in the prefrontal cortex of the tumor-bearing mice. A: Transmission electron microscopy of the prefrontal cortex tissue of the mice. B: ROS content in the prefrontal cortex tissue. C: Iron content in the prefrontal cortex tissue. D: GSH content in the prefrontal cortex tissue. E: MDA content in the prefrontal cortex tissue. *P<0.05, **P<0.01, ***P<0.001 vs control group; #P<0.05, ##P<0.01, ###P<0.001 vs model group; &&P<0.01 vs KXS-L group (n=3).
图6 开心散含药血清对阿霉素处理的SH-SY5Y细胞的影响
Fig.6 Effect of KXS-medicated serum on adriamycin-treated SH-SY5Y cells. A:Growth of SH-SY5Y cells treated with medicated sera for 48 h (Blank: Serum derived from the control group; Adriamycin: Serum from model group containing 10 nmol/L Adriamycin; KXS-L: Serum from low-dose KXS treatment group containing 10 nmol/L Adriamycin; KXS-H: Serum from high-dose KXS treatment group containing 10 nmol/L Adriamycin; Fer-1: Serum from model group containing 10 nmol/L adriamycin and 2 μmol/L Fer-1). B: Cell viability measured by MTT colorimetric assay. C: Lipid ROS content in cell cultures. D: Iron content in the cell cultures. E: GSH content in the cell cultures. F: MDA content in the cell cultures. *P<0.05, **P<0.01, ***P<0.001 vs blank group; ##P<0.01, ###P<0.001 vs adriamycin group; &&P<0.01, &&&P<0.001 vs KXS-L group (n=3).
1 | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-63. |
2 | Wang YZ, Han JW, Zhan SF, et al. Fucoidan alleviates doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via Nrf2/GPX4 pathway[J]. Int J Biol Macromol, 2024, 276(Pt 1): 133792. |
3 | Ren QQ, Zhu P, Zhang LC, et al. A longitudinal evaluation of oxidative stress-mitochondrial dysfunction-ferroptosis genes in anthracycline-induced cardiotoxicity[J]. BMC Cardiovasc Disord, 2024, 24(1): 350-8. |
4 | Zhou N, Wei SS, Sun TL, et al. Recent progress in the role of endogenous metal ions in doxorubicin-induced cardiotoxicity[J]. Front Pharmacol, 2023, 14: 1292088. |
5 | Chen Y, Li WX, Wu JH, et al. Does the dose of standard adjuvant chemotherapy affect the triple-negative breast cancer benefit from extended capecitabine metronomic therapy? an exploratory analysis of the SYSUCC-001 trial[J]. Breast Cancer, 2024, 16: 223-31. |
6 | 中国抗癌协会乳腺癌专业委员会, 中国抗癌协会国际医疗交流分会, 中国医师协会肿瘤医师分会乳腺癌学组. 中国晚期三阴性乳腺癌临床诊疗指南(2024版)[J]. 中华肿瘤杂志, 2024, 46(6): 471. |
7 | Kamińska K, Cudnoch-Jędrzejewska A. A review on the neurotoxic effects of doxorubicin[J]. Neurotox Res, 2023, 41(5): 383-97. |
8 | Ibrahim AA, Nsairat H, Al-Sulaibi M, et al. Doxorubicin conjugates: a practical approach for its cardiotoxicity alleviation[J]. Expert Opin Drug Deliv, 2024, 21(3): 399-422. |
9 | Cui LL, Huang J, Zhan YT, et al. Association between the genetic polymorphisms of the pharmacokinetics of anthracycline drug and myelosuppression in a patient with breast cancer with anthracycline-based chemotherapy[J]. Life Sci, 2021, 276: 119392. |
10 | Yamaguchi N, Fujii T, Aoi S, et al. Comparison of cardiac events associated with liposomal doxorubicin, epirubicin and doxorubicin in breast cancer: a Bayesian network meta-analysis[J]. Eur J Cancer, 2015, 51(16): 2314-20. |
11 | Su HL, Jia J, Mao YX, et al. A real-world analysis of FDA Adverse Event Reporting System (FAERS) events for liposomal and conventional doxorubicins[J]. Sci Rep, 2024, 14(1): 5095. |
12 | Li YN, Li LX, Wei SS, et al. Integrating transcriptomics and metabolomics to elucidate the mechanism by which taurine protects against DOX-induced depression[J]. Sci Rep, 2024, 14(1): 2686. |
13 | Lee CH, Wang SL. Oral mirtazapine decreases the gastrointestinal adverse effects in cats on doxorubicin chemotherapy[J]. Vet J, 2024, 304: 106087. |
14 | Walker WH 2nd, Meléndez-Fernández OH, Pascoe JL, et al. Social enrichment attenuates chemotherapy induced pro-inflammatory cytokine production and affective behavior via oxytocin signaling[J]. Brain Behav Immun, 2020, 89: 451-64. |
15 | Ren XJ, Keeney JTR, Miriyala S, et al. The triangle of death of neurons: Oxidative damage, mitochondrial dysfunction, and loss of choline-containing biomolecules in brains of mice treated with doxorubicin. Advanced insights into mechanisms of chemotherapy induced cognitive impairment ("chemobrain") involving TNF-Α[J]. Free Radic Biol Med, 2019, 134: 1-8. |
16 | Owumi SE, Adebisi G. Epirubicin treatment induces neuro-behavioral, oxido-inflammatory and neurohistology alterations in rats: protective effect of the endogenous metabolite ofTryptophan‑3-indolepropionic acid[J]. Neurochem Res, 2023, 48(9): 2767-83. |
17 | Zhou XY, Xu PF, Dang RL, et al. The involvement of autophagic flux in the development and recovery of doxorubicin-induced neurotoxicity[J]. Free Radic Biol Med, 2018, 129: 440-5. |
18 | Moruno-Manchon JF, Uzor NE, Kesler SR, et al. Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy[J]. Mol Cell Neurosci, 2018, 86: 65-71. |
19 | Verma T, Mallik SB, Ramalingayya GV, et al. Sodium valproate enhances doxorubicin-induced cognitive dysfunction in Wistar rats[J]. Biomedecine Pharmacother, 2017, 96: 736-41. |
20 | Wang CR, Wang JW, Qi YF. Adjuvant treatment with Cordyceps sinensis for lung cancer: a systematic review and meta-analysis of randomized controlled trials[J]. J Ethnopharmacol, 2024, 327: 118044. |
21 | Luo F, Wan DG, Liu J, et al. Efficacy of the traditional Chinese medicine, Buyang Huanwu Decoction, at preventing taxane-induced peripheral neuropathy in breast cancer patients: a prospective, randomized, controlled study[J]. Medicine, 2024, 103(9): e37338. |
22 | Han JR, Lai HZ, Li WY, et al. Efficacy and safety of traditional plant-based medicines for preventing chronic oxaliplatin-induced peripheral neurotoxicity in patients with colorectal cancer: a systematic review and meta-analysis with core herb contribution[J]. J Ethnopharmacol, 2024, 326: 117735. |
23 | Song Q, Zhang J, Wu QB, et al. Kanglaite injection plus fluorouracil-based chemotherapy on the reduction of adverse effects and improvement of clinical effectiveness in patients with advanced malignant tumors of the digestive tract: a meta-analysis of 20 RCTs following the PRISMA guidelines[J]. Medicine, 2020, 99(17): e19480. |
24 | Sun CH, Dong F, Xiao T, et al. Efficacy and safety of Chinese patent medicine (Kang-ai injection) as an adjuvant in the treatment of patients with hepatocellular carcinoma: a meta-analysis[J]. Pharm Biol, 2021, 59(1): 472-83. |
25 | Chen Y, Ma MY, Xu F. The safety and efficacy of Compound Kushen Injection with chemoradiotherapy for the outcomes of lung and gastrointestinal cancers: a PRIMSA-compliant meta-analysis[J]. Medicine, 2024, 103(14): e36758. |
26 | He YY, Qi A, Gu YF, et al. Clinical efficacy and gut microbiota regulating-related effect of Si-Jun-zi Decoction in postoperative non-small cell lung cancer patients: a prospective observational study[J]. Integr Cancer Ther, 2024, 23: 15347354241237973. |
27 | Chen LP, Jiang L, Shi XY, et al. Constituents, pharmacological activities, pharmacokinetic studies, clinical applications, and safety profile on the classical prescription Kaixinsan[J]. Front Pharmacol, 2024, 15: 1338024. |
28 | Li JL, Lin L, Wu MM, et al. A meta-analysis of the efficacy and safety of the traditional Chinese medicine formula Kaixinsan Decoction for depression[J]. Medicine, 2024, 103(1): e36719. |
29 | Hu Y, Wang YC, Chen C, et al. A randomized, placebo-controlled, double-blind study on the effects of SZL on patients with mild to moderate depressive disorder with comparison to fluoxetine[J]. J Ethnopharmacol, 2021, 281: 114549. |
30 | 张 浩, 朱国旗, 杨绍杰, 等. 开心散治疗乳腺癌失眠症患者的临床疗效及对血清5-羟色胺水平的影响[J]. 安徽中医药大学学报, 2024, 43(2): 19-24. |
31 | 杨 洁, 刘彦廷. 开心散合剂治疗血管性痴呆临床观察[J]. 山西中医, 2023, 39(9): 30-2. |
32 | Lyu WJ, Ouyang MZ, Ma XM, et al. Kai-Xin-San attenuates doxorubicin-induced cognitive impairment by reducing inflammation, oxidative stress, and neural degeneration in 4T1 breast cancer mice[J]. Evid Based Complement Alternat Med, 2021, 2021: 5521739. |
33 | Wu YC, Pi DJ, Chen YL, et al. Yifei sanjie pills alleviate chemotherapy-related fatigue by reducing skeletal muscle injury and inhibiting tumor growth in lung cancer mice[J]. Evid Based Complement Alternat Med, 2022, 2022: 2357616. |
34 | 吴迎朝, 左 谦, 罗 薇, 等. 益肺散结丸缓解小鼠癌因性骨骼肌萎缩的作用[J]. 南方医科大学学报, 2023, 43(11): 1839-49. |
35 | Wu YC, Zhou SY, Pi DJ, et al. Deciphering the molecular mechanism of yifei-Sanjie pill in cancer-related fatigue[J]. J Oncol, 2023, 2023: 5486017. |
36 | 曹 策, 李玲美, 訾明杰, 等. 医学研究中动物实验样本量的确定方法[J]. 中国比较医学杂志, 2023, 33(2): 99-105. |
37 | 吴迎朝, 吴 芃, 田 欢, 等. 全转录组学关联分析研究开心散缓解乳腺癌化疗性认知障碍的作用机制[J/OL]. 中国中药杂志, 2024. . |
38 | 程美佳, 袁常斌, 鞠业涛, 等. 开心散通过调控NLRP3/Caspase-1/GSDMD信号通路抑制阿尔茨海默病小鼠神经炎症的作用机制[J]. 中华中医药杂志, 2024, 39(3): 1203-8. |
39 | 殷俊梅, 王 偲, 丁 侃, 等. 古代经典名方开心散及其类方组方理论探析[J]. 中国医药导报, 2023, 20(33): 134-7. |
40 | Wu L, Du YX, Wang LT, et al. Inhibition of METTL3 ameliorates doxorubicin-induced cardiotoxicity through suppression of TFRC-mediated ferroptosis[J]. Redox Biol, 2024, 72: 103157. |
41 | Kciuk M, Gielecińska A, Mujwar S, et al. Doxorubicin-an agent with multiple mechanisms of anticancer activity[J]. Cells, 2023, 12(4): 659. |
42 | Xu CY, Xiong Q, Tian X, et al. Alcohol exposure induces depressive and anxiety-like behaviors via activating ferroptosis in mice[J]. Int J Mol Sci, 2022, 23(22): 13828. |
43 | Dai YL, Guo JX, Zhang BR, et al. Lycium barbarum (Wolfberry) glycopeptide prevents stress-induced anxiety disorders by regulating oxidative stress and ferroptosis in the medial prefrontal cortex[J]. Phytomedicine, 2023, 116: 154864. |
44 | Rubin de Celis MF, Bornstein SR, Androutsellis-Theotokis A, et al. The effects of stress on brain and adrenal stem cells[J]. Mol Psychiatry, 2016, 21(5): 590-3. |
45 | Rao U. Comorbidity between depressive and addictive disorders in adolescents: role of stress and hpa activity[J]. US Psyc, 2010, 3: 39-43. |
46 | Knezevic E, Nenic K, Milanovic V, et al. The role of cortisol in chronic stress, neurodegenerative diseases, and psychological disorders[J]. Cells, 2023, 12(23): 2726. |
47 | de Voogd LD, Kampen RA, Kaldewaij R, et al. Trauma-induced human glucocorticoid receptor expression increases predict subsequent HPA-axis blunting in a prospective longitudinal design[J]. Psychoneuroendocrinology, 2022, 146: 105909. |
48 | Pariante CM. Glucocorticoid receptor function in vitro in patients with major depression[J]. Stress, 2004, 7(4): 209-19. |
49 | Lin SS, Du YW, Xia YJ, et al. Advances in optogenetic studies of depressive-like behaviors and underlying neural circuit mechanisms[J]. Front Psychiatry, 2022, 13: 950910. |
[1] | 张叶明, 张袁祥, 沈学彬, 王国栋, 朱磊. 在抑郁症大鼠模型中MiRNA-103-3p调控Rab10促进神经细胞自噬[J]. 南方医科大学学报, 2024, 44(7): 1315-1326. |
[2] | 王元国, 张鹏. 铁死亡抑制基因在食管癌中的高表达分析[J]. 南方医科大学学报, 2024, 44(7): 1389-1396. |
[3] | 何华星, 刘璐琳, 刘颖茵, 陈纳川, 孙素霞. 丁酸钠与索拉非尼可能通过YAP诱导铁死亡协同抑制肝癌细胞增殖[J]. 南方医科大学学报, 2024, 44(7): 1425-1430. |
[4] | 任智先, 周倍贤, 王林鑫, 李菁, 张荣平, 潘锡平. 5-羟基-6,7-二甲氧基黄酮抑制流感病毒诱导A549细胞炎症反应和铁死亡的作用及机制[J]. 南方医科大学学报, 2024, 44(6): 1070-1078. |
[5] | 房锦存, 刘立威, 林俊豪, 陈逢生. CDHR2过表达通过抑制PI3K/Akt通路抑制乳腺癌细胞增殖[J]. 南方医科大学学报, 2024, 44(6): 1117-1125. |
[6] | 张方圆, 刘刚. 右美托咪定通过激活Nrf2/HO-1/GPX4通路抑制肾小管上皮细胞的铁死亡[J]. 南方医科大学学报, 2024, 44(6): 1135-1140. |
[7] | 崔芝, 马萃娇, 王倩茹, 陈金豪, 严子阳, 杨建林, 吕亚丰, 曹春雨. 表达 TGF-βⅡ受体的腺相关病毒载体抑制小鼠三阴性乳腺癌4T1细胞的增殖和肺转移[J]. 南方医科大学学报, 2024, 44(5): 818-826. |
[8] | 孙一鸣, 张荣, 孟莹, 朱磊, 李明强, 刘哲. 辅酶Q10通过下调焦亡信号通路缓解抑郁小鼠的抑郁样行为[J]. 南方医科大学学报, 2024, 44(5): 810-817. |
[9] | 王南, 石斌, 马小兰, 吴伟超, 曹佳. FMRP通过激活RAS/MAPK信号通路抑制结直肠肿瘤细胞的铁死亡[J]. 南方医科大学学报, 2024, 44(5): 885-893. |
[10] | 申磊磊, 陈莹, 云天洋, 郭俊唐, 柳曦, 张涛, 梁朝阳, 刘阳. IB期肺腺癌患者辅助治疗方案的筛选[J]. 南方医科大学学报, 2024, 44(5): 989-997. |
[11] | 李淑贤, 于淑平, 穆亚铭, 王 凯, 刘 玉, 张美华. 二甲双胍通过抑制铁死亡改善PM2.5导致的胎盘滋养细胞功能损伤[J]. 南方医科大学学报, 2024, 44(3): 437-446. |
[12] | 熊一凡, 梁小珊, 梁晓涛, 李伟鹏, 钱益啸, 谢 炜. 柴胡皂甙a减轻戊四氮诱发的皮质酮抑郁模型小鼠的急性癫痫发作:基于小胶质细胞介导的炎症反应[J]. 南方医科大学学报, 2024, 44(3): 515-522. |
[13] | 李新翼, 刘玉杰, 邓克崇, 胡义奎. 调节肠道菌群可改善卒中后大鼠的神经功能和抑郁症状[J]. 南方医科大学学报, 2024, 44(2): 405-410. |
[14] | 孙 硕, 黄 鑫, 李国东, 张春云, 卢泽梅, 张伟伟, 李泽彦, 杨清竹. 敲低结肠癌转移相关基因1促进RSL3诱导的结直肠癌细胞铁死亡[J]. 南方医科大学学报, 2024, 44(1): 173-178. |
[15] | 张晓红, 赵 品, 蒯建科, 常 超, 袁 庆. 亚精胺通过抑制细胞凋亡、ROS生成及铁死亡减轻脂多糖诱导的小鼠心肌损伤[J]. 南方医科大学学报, 2024, 44(1): 166-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||