1 |
Zhang X, Ge X, Jiang T, et al. Research progress on immunotherapy in triple-negative breast cancer (Review)[J]. Int J Oncol, 2022, 61(2): 95. DOI: 10.3892/ijo.2022.5385
|
2 |
Borri F, Granaglia A. Pathology of triple negative breast cancer[J]. Semin Cancer Biol, 2021, 72: 136-45. DOI: 10.1016/j.semcancer.2020.06.005
|
3 |
Howard FM, Olopade OI. Epidemiology of triple-negative breast cancer: a review[J]. Cancer J, 2021, 27(1): 8-16. DOI: 10.1097/ppo.0000000000000500
|
4 |
Fan Y, He S. The characteristics of tumor microenvironment in triple negative breast cancer[J]. Cancer Manag Res, 2022, 14: 1-17. DOI: 10.2147/cmar.s316700
|
5 |
Emens LA, Loi S. Immunotherapy approaches for breast cancer patients in 2023[J]. Cold Spring Harb Perspect Med, 2023, 13(4): a041332. DOI: 10.1101/cshperspect.a041332
|
6 |
Sharmni Vishnu K, Win TT, Aye SN, et al. Combined atezolizumab and nab-paclitaxel in the treatment of triple negative breast cancer: a meta-analysis on their efficacy and safety[J]. BMC Cancer, 2022, 22(1): 1139. DOI: 10.1186/s12885-022-10225-y
|
7 |
Peng D, Fu M, Wang M, et al. Targeting TGF-β signal transduction for fibrosis and cancer therapy[J]. Mol Cancer, 2022, 21(1): 104. DOI: 10.1186/s12943-022-01569-x
|
8 |
Zhao H, Wei J, Sun J. Roles of TGF-β signaling pathway in tumor microenvirionment and cancer therapy[J]. Int Immunopharmacol, 2020, 89(pt b): 107101. DOI: 10.1016/j.intimp.2020.107101
|
9 |
Gao HC, Huang YZ, Liu YQ, et al. Role of TG2 and TGF-β1 in the pathogenesis of human breast cancer[J]. Oncol Lett, 2020, 20(5): 221. DOI: 10.3892/ol.2020.12057
|
10 |
Lee JH, Massagué J. TGF-β in developmental and fibrogenic EMTs[J]. Semin Cancer Biol, 2022, 86(pt 2): 136-45. DOI: 10.1016/j.semcancer.2022.09.004
|
11 |
Ren Y, Jia HH, Xu YQ, et al. Paracrine and epigenetic control of CAF-induced metastasis: the role of HOTAIR stimulated by TGF-ß1 secretion[J]. Mol Cancer, 2018, 17(1): 5. DOI: 10.1186/s12943-018-0758-4
|
12 |
Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer[J]. Immunity, 2019, 50(4): 924-40. DOI: 10.1016/j.immuni.2019.03.024
|
13 |
Trelford CB, Dagnino L, Di Guglielmo GM. Transforming growth factor-β in tumour development[J]. Front Mol Biosci, 2022, 9: 991612. DOI: 10.3389/fmolb.2022.991612
|
14 |
Hao Y, Baker D, Ten Dijke P. TGF‑β‑mediated epithelial-mesenchymal transition and cancer metastasis[J]. Int J Mol Sci, 2019, 20(11): E2767. DOI: 10.3390/ijms20112767
|
15 |
Zhou C, Wang D, Li J, et al. TGFB2-AS1 inhibits triple-negative breast cancer progression via interaction with SMARCA4 and regulating its targets TGFB2 and SOX2 [J]. Proc Natl Acad Sci USA, 2022, 119(39): e2117988119. DOI: 10.1073/pnas.2117988119
|
16 |
Hussen BM, Hidayat HJ, Abdullah SR, et al. Role of long non-coding RNAs and TGF-β signaling in the regulation of breast cancer pathogenesis and therapeutic targets[J]. Cytokine, 2023, 170: 156351. DOI: 10.1016/j.cyto.2023.156351
|
17 |
Wang Y. Recombinant Elabela-Fc fusion protein has extended plasma half-life and mitigates post-infarct heart dysfunction in rats[J]. Int J Cardiol, 2020, 300: 217-8. DOI: 10.1016/j.ijcard.2019.06.043
|
18 |
Davidsohn N, Pezone M, Vernet A, et al. A single combination gene therapy treats multiple age-related diseases[J]. Proc Natl Acad Sci USA, 2019, 116(47): 23505-11. DOI: 10.1073/pnas.1910073116
|
19 |
Gulley JL, Schlom J, Barcellos-Hoff MH, et al. Dual inhibition of TGF-β and PD-L1: a novel approach to cancer treatment[J]. Mol Oncol, 2022, 16(11): 2117-34. DOI: 10.1002/1878-0261.13146
|
20 |
Mehta N, Gilbert R, Chahal PS, et al. Preclinical development and characterization of novel adeno-associated viral vectors for the treatment of lipoprotein lipase deficiency[J]. Hum Gene Ther, 2023, 34(17/18): 927-46. DOI: 10.1089/hum.2023.075
|
21 |
Vignal-Clermont C, Yu-Wai-Man P, Newman NJ, et al. Safety of lenadogene nolparvovec gene therapy over 5 years in 189 patients with leber hereditary optic neuropathy[J]. Am J Ophthalmol, 2023, 249: 108-25. DOI: 10.1016/j.ajo.2022.11.026
|
22 |
Long BR, Veron P, Kuranda K, et al. Early phase clinical immunogenicity of valoctocogene roxaparvovec, an AAV5-mediated gene therapy for hemophilia A[J]. Mol Ther, 2021, 29(2): 597-610. DOI: 10.1016/j.ymthe.2020.12.008
|
23 |
Logan GJ, Mietzsch M, Khandekar N, et al. Structural and functional characterization of capsid binding by anti-AAV9 monoclonal antibodies from infants after SMA gene therapy[J]. Mol Ther, 2023, 31(7): 1979-93. DOI: 10.1016/j.ymthe.2023.03.032
|
24 |
Franke AC, Hardet R, Prager L, et al. Capsid-modified adeno-associated virus vectors as novel vaccine platform for cancer immunotherapy[J]. Mol Ther Methods Clin Dev, 2023, 29: 238-53. DOI: 10.1016/j.omtm.2023.03.010
|
25 |
Liao ZX, Hsu SH, Tang SC, et al. Potential targeting of the tumor microenvironment to improve cancer virotherapy[J]. Pharmacol Ther, 2023, 250: 108521. DOI: 10.1016/j.pharmthera.2023.108521
|
26 |
Meumann N, Cabanes-Creus M, Ertelt M, et al. Adeno-associated virus serotype 2 capsid variants for improved liver-directed gene therapy[J]. Hepatology, 2023, 77(3): 802-15. DOI: 10.1002/hep.32733
|
27 |
Jeyakumar JM, Kia A, Tam LCS, et al. Preclinical evaluation of FLT190, a liver-directed AAV gene therapy for Fabry disease[J]. Gene Ther, 2023, 30: 487-502. DOI: 10.1038/s41434-022-00381-y
|
28 |
Leebeek FWG, Miesbach W. Gene therapy for hemophilia: a review on clinical benefit, limitations, and remaining issues[J]. Blood, 2021, 138(11): 923-31. DOI: 10.1182/blood.2019003777
|
29 |
Rodríguez-Márquez E, Meumann N, Büning H. Adeno-associated virus (AAV) capsid engineering in liver-directed gene therapy[J]. Expert Opin Biol Ther, 2021, 21(6): 749-66.
|
30 |
Lv YF, Zhang H, Cui Z, et al. Gene delivery to breast cancer by incorporated EpCAM targeted DARPins into AAV2[J]. BMC Cancer, 2023, 23(1): 1220. DOI: 10.1186/s12885-023-11705-5
|
31 |
Huang Z, Pang X, Zhong T, et al. Penpulimab, an fc-engineered IgG1 anti-PD-1 antibody, with improved efficacy and low incidence of immune-related adverse events[J]. Front Immunol, 2022, 13: 924542. DOI: 10.3389/fimmu.2022.924542
|
32 |
DePeaux K, Rivadeneira DB, Lontos K, et al. An oncolytic virus-delivered TGFβ inhibitor overcomes the immunosuppressive tumor microenvironment[J]. J Exp Med, 2023, 220(10): e20230053. DOI: 10.1084/jem.20230053
|
33 |
Peña-Romero AC, Orenes-Piñero E. Dual effect of immune cells within tumour microenvironment: pro- and anti-tumour effects and their triggers[J]. Cancers: Basel, 2022, 14(7): 1681. DOI: 10.3390/cancers14071681
|
34 |
Shi X, Yang J, Deng S, et al. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies[J]. J Hematol Oncol, 2022, 15(1): 135. DOI: 10.1186/s13045-022-01349-6
|
35 |
Larson C, Oronsky B, Carter CA, et al. TGF-beta: a master immune regulator[J]. Expert Opin Ther Targets, 2020, 24(5): 427-38. DOI: 10.1080/14728222.2020.1744568
|