1 |
Short MW, Burgers KG, Fry VT. Esophageal cancer[J]. Am Fam Physician, 2017, 95(1): 22-8.
|
2 |
Liu Y, Ge QQ, Xu SN, et al. Efficacy and safety of anlotinib plus programmed death-1 blockade versus anlotinib monotherapy as second or further-line treatment in advanced esophageal squamous cell carcinoma: a retrospective study[J]. Front Oncol, 2022, 12: 942678.
|
3 |
Hong T, Lei G, Chen X, et al. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer[J]. Redox Biol, 2021, 42: 101928.
|
4 |
Cheng Q, Bao LJ, Li MQ, et al. Erastin synergizes with cisplatin via ferroptosis to inhibit ovarian cancer growth in vitro and in vivo [J]. J Obstet Gynaecol Res, 2021, 47(7): 2481-91.
|
5 |
Yin LZ, Liu PY, Jin Y, et al. Ferroptosis-related small-molecule compounds in cancer therapy: strategies and applications[J]. Eur J Med Chem, 2022, 244: 114861.
|
6 |
Guo JP, Xu BF, Han Q, et al. Ferroptosis: a novel anti-tumor action for cisplatin[J]. Cancer Res Treat, 2018, 50(2): 445-60.
|
7 |
Tao H, Song SJ, Fan ZW, et al. PKCiota inhibits the ferroptosis of esophageal cancer cells via suppressing USP14-mediated autophagic degradation of GPX4[J]. Antioxidants, 2024, 13(1): 114.
|
8 |
Fan X, Fan YT, Zeng H, et al. Role of ferroptosis in esophageal cancer and corresponding immunotherapy[J]. World J Gastrointest Oncol, 2023, 15(7): 1105-18.
|
9 |
Shishido Y, Amisaki M, Matsumi Y, et al. Antitumor effect of 5-aminolevulinic acid through ferroptosis in esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2021, 28(7): 3996-4006.
|
10 |
Jiang B, Zhao YQ, Shi M, et al. DNAJB6 promotes ferroptosis in esophageal squamous cell carcinoma[J]. Dig Dis Sci, 2020, 65(7): 1999-2008.
|
11 |
Maimaitizunong R, Wang K, Li H. Ferroptosis and its emerging role in esophageal cancer[J]. Front Mol Biosci, 2022, 9: 1027912.
|
12 |
Yao WJ, Wang JJ, Meng FR, et al. Circular RNA CircPVT1 inhibits 5-fluorouracil chemosensitivity by regulating ferroptosis through miR-30a-5p/FZD3 axis in esophageal cancer cells[J]. Front Oncol, 2021, 11: 780938.
|
13 |
Zhang JH, Wang N, Zhou YY, et al. Oridonin induces ferroptosis by inhibiting gamma-glutamyl cycle in TE1 cells[J]. Phytother Res, 2021, 35(1): 494-503.
|
14 |
Yang RY, Chen FZ, Xu HZ, et al. Exploring the mechanism of realgar against esophageal cancer based on ferroptosis induced by ROS-ASK1-p38 MAPK signaling pathway[J]. Evid Based Complement Alternat Med, 2022: 3698772.
|
15 |
Yin LB, Li ZW, Wang JL, et al. Sulfasalazine inhibits esophageal cancer cell proliferation by mediating ferroptosis[J]. Chem Biol Drug Des, 2023, 102(4): 730-7.
|
16 |
Xia Y, Tang YX, Huang ZX, et al. Artesunate-loaded solid lipid nanoparticles resist esophageal squamous cell carcinoma by inducing Ferroptosis through inhibiting the AKT/mTOR signaling[J]. Cell Signal, 2024, 117: 111108.
|
17 |
Niu BY, Liao KX, Zhou YX, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy[J]. Biomaterials, 2021, 277: 121110.
|
18 |
Criscuolo D, Avolio R, Parri M, et al. Decreased levels of GSH are associated with platinum resistance in high-grade serous ovarian cancer[J]. Antioxidants, 2022, 11(8): 1544.
|
19 |
Wang SF, Chang YL, Fang WL, et al. Growth differentiation factor 15 induces cisplatin resistance through upregulation of xCT expression and glutathione synthesis in gastric cancer[J]. Cancer Sci, 2023, 114(8): 3301-17.
|
20 |
Xu R, Wang WN, Zhang WL. Ferroptosis and the bidirectional regulatory factor p53[J]. Cell Death Discov, 2023, 9(1): 197.
|
21 |
Chu B, Kon N, Chen DL, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway[J]. Nat Cell Biol, 2019, 21(5): 579-91.
|
22 |
Yi JM, Zhu JJ, Wu J, et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J]. Proc Natl Acad Sci USA, 2020, 117(49): 31189-97.
|
23 |
Lei G, Zhuang L, Gan BY. mTORC1 and ferroptosis: regulatory mechanisms and therapeutic potential[J]. Bioessays, 2021, 43(8): e2100093.
|
24 |
Zhang YL, Swanda RV, Nie LT, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation[J]. Nat Commun, 2021, 12(1): 1589.
|
25 |
Ma SM, Dielschneider RF, Henson ES, et al. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells[J]. PLoS One, 2017, 12(8): e0182921.
|
26 |
Man SL, Luo C, Yan MY, et al. Treatment for liver cancer: from sorafenib to natural products[J]. Eur J Med Chem, 2021, 224: 113690.
|
27 |
Fallahi P, Ferrari SM, Galdiero MR, et al. Molecular targets of tyrosine kinase inhibitors in thyroid cancer[J]. Semin Cancer Biol, 2022, 79: 180-96.
|
28 |
Li QH, Chen KX, Zhang TY, et al. Understanding sorafenib-induced ferroptosis and resistance mechanisms: implications for cancer therapy[J]. Eur J Pharmacol, 2023, 955: 175913.
|
29 |
Costa I, Barbosa DJ, Benfeito S, et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases[J]. Pharmacol Ther, 2023, 244: 108373.
|
30 |
Sui XB, Zhang RN, Liu SP, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J]. Front Pharmacol, 2018, 9: 1371.
|
31 |
Sun YD, Berleth N, Wu WX, et al. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells[J]. Cell Death Dis, 2021, 12(11): 1028.
|
32 |
Gaschler MM, Andia AA, Liu HR, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation[J]. Nat Chem Biol, 2018, 14(5): 507-15.
|
33 |
Cheung EC, Vousden KH. The role of ROS in tumour development and progression[J]. Nat Rev Cancer, 2022, 22(5): 280-97.
|