1 |
Davidson RJ, Pizzagalli D, Nitschke JB, et al. Depression: perspectives from affective neuroscience[J]. Annu Rev Psychol, 2002, 53: 545-74.
|
2 |
Davidson JRT. Major depressive disorder treatment guidelines in America and Europe[J]. J Clin Psychiatry, 2010, 71(): e04.
|
3 |
O’Leary LA, Mechawar N. Implication of cerebral astrocytes in major depression: a review of fine neuroanatomical evidence in humans[J]. Glia, 2021, 69(9): 2077-99.
|
4 |
O’Connor S, Agius M. A systematic review of structural and functional MRI differences between psychotic and nonpsychotic depression[J]. Psychiatr Danub, 2015, 27(): S235-9.
|
5 |
Hertz L, Rothman DL, Li BM, et al. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift[J]. Front Behav Neurosci, 2015, 9: 25.
|
6 |
Domschke K. Clinical and molecular genetics of psychotic depression[J]. Schizophr Bull, 2013, 39(4): 766-75.
|
7 |
Brunet M, van Gelder T, Åsberg A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report[J]. Ther Drug Monit, 2019, 41(3): 261-307.
|
8 |
Rothschild AJ. Challenges in the treatment of major depressive disorder with psychotic features[J]. Schizophr Bull, 2013, 39(4): 787-96.
|
9 |
Parker G, Roy K, Hadzi-Pavlovic D, et al. Psychotic (delusional) depression: a meta-analysis of physical treatments[J]. J Affect Disord, 1992, 24(1): 17-24.
|
10 |
Sonmez AI, Camsari DD, Nandakumar AL, et al. Accelerated TMS for Depression: a systematic review and meta-analysis[J]. Psychiatry Res, 2019, 273: 770-81.
|
11 |
Vasudevan SO, Behl B, Rathinam VA. Pyroptosis-induced inflammation and tissue damage[J]. Semin Immunol, 2023, 69: 101781.
|
12 |
Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis[J]. Trends Cell Biol, 2017, 27(9): 673-84.
|
13 |
祁 宏, 王 洋, 石艳香. 细胞凋亡、坏死和焦亡信号网络关键节点的识别[J]. 河南师范大学学报: 自然科学版, 2024, 52(1): 51-9.
|
14 |
Li SS, Sun YM, Song MM, et al. NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression[J]. JCI Insight, 2021, 6(23): e146852.
|
15 |
Maes M, Mihaylova I, Kubera M, et al. Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness[J]. Neuro Endocrinol Lett, 2009, 30(4): 462-9.
|
16 |
Lesser GJ, Case D, Stark N, et al. A randomized, double-blind, placebo-controlled study of oral coenzyme Q10 to relieve self-reported treatment-related fatigue in newly diagnosed patients with breast cancer[J]. J Support Oncol, 2013, 11(1): 31-42.
|
17 |
Chiba SC, Numakawa T, Ninomiya M, et al. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2012, 39(1): 112-9.
|
18 |
Abuelezz SA, Hendawy N, Magdy Y. Targeting oxidative stress, cytokines and serotonin interactions via indoleamine 2, 3 dioxygenase by coenzyme Q10: role in suppressing depressive like behavior in rats[J]. J Neuroimmune Pharmacol, 2017, 12(2): 277-91.
|
19 |
Zhang Y, Liu L, Liu YZ, et al. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation[J]. Int J Neuropsychopharmacol, 2015, 18(8): pyv006.
|
20 |
Jha MK, Jo M, Kim JH, et al. Microglia-astrocyte crosstalk: an intimate molecular conversation[J]. Neuroscientist, 2019, 25(3): 227-40.
|
21 |
Sun MQ, You HL, Hu XX, et al. Microglia-astrocyte interaction in neural development and neural pathogenesis[J]. Cells, 2023, 12(15): 1942.
|
22 |
Sacristán C. Microglia and astrocyte crosstalk in immunity[J]. Trends Immunol, 2020, 41(9): 747-8.
|
23 |
李爱萍, 赵慧娟, 贾梦阳, 等. 辅酶Q10在代谢综合征和心血管疾病中的研究进展[J]. 中国医药科学, 2022, 12(9): 54-7. DOI: 10.3969/j.issn.2095-0616.2022.09.015
|
24 |
Yang LC, Calingasan NY, Wille EJ, et al. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases[J]. J Neurochem, 2009, 109(5): 1427-39.
|
25 |
Erol B, Bozlu M, Hanci V, et al. Coenzyme Q10 treatment reduces lipid peroxidation, inducible and endothelial nitric oxide synthases, and germ cell-specific apoptosis in a rat model of testicular ischemia/reperfusion injury[J]. Fertil Steril, 2010, 93(1): 280-2.
|
26 |
Attia HN, Maklad YA. Neuroprotective effects of coenzyme Q10 on paraquat-induced Parkinson's disease in experimental animals[J]. Behav Pharmacol, 2018, 29(1): 79-86.
|
27 |
Forester BP, Zuo CS, Ravichandran C, et al. Coenzyme Q10 effects on creatine kinase activity and mood in geriatric bipolar depression[J]. J Geriatr Psychiatry Neurol, 2012, 25(1): 43-50.
|
28 |
Nasoohi S, Simani L, Khodagholi F, et al. Coenzyme Q10 supplementation improves acute outcomes of stroke in rats pretreated with atorvastatin[J]. Nutr Neurosci, 2019, 22(4): 264-72.
|
29 |
Aboul-Fotouh S. Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats[J]. Pharmacol Biochem Behav, 2013, 104: 105-12.
|
30 |
Alcocer-Gómez E, Sánchez-Alcázar JA, Cordero MD. Coenzyme Q10 regulates serotonin levels and depressive symptoms in fibromyalgia patients: results of a small clinical trial[J]. J Clin Psychopharmacol, 2014, 34(2): 277-8.
|
31 |
Heimfarth L, Passos FRS, Monteiro BS, et al. Serum glial fibrillary acidic protein is a body fluid biomarker: a valuable prognostic for neurological disease-A systematic review[J]. Int Immunopharmacol, 2022, 107: 108624.
|
32 |
Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression[J]. CNS Neurol Disord Drug Targets, 2007, 6(3): 219-33.
|
33 |
Salehpour F, Farajdokht F, Cassano P, et al. Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis[J]. Brain Res Bull, 2019, 144: 213-22.
|
34 |
Abuelezz SA, Hendawy N, Magdy Y. The potential benefit of combined versus monotherapy of coenzyme Q10 and fluoxetine on depressive-like behaviors and intermediates coupled to Gsk-3β in rats[J]. Toxicol Appl Pharmacol, 2018, 340: 39-48.
|
35 |
Li DX, Wang CN, Wang Y, et al. NLRP3 inflammasome-dependent pyroptosis and apoptosis in hippocampus neurons mediates depressive-like behavior in diabetic mice[J]. Behav Brain Res, 2020, 391: 112684.
|
36 |
Li YJ, Song W, Tong Y, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis[J]. J Neuroinflammation, 2021, 18(1): 1-23.
|
37 |
Yang F, Zhu W, Cai XF, et al. Minocycline alleviates NLRP3 inflammasome-dependent pyroptosis in monosodium glutamate-induced depressive rats[J]. Biochem Biophys Res Commun, 2020, 526(3): 553-9.
|
38 |
Younus I, Reddy DS. A resurging boom in new drugs for epilepsy and brain disorders[J]. Expert Rev Clin Pharmacol, 2018, 11(1): 27-45.
|