南方医科大学学报 ›› 2026, Vol. 46 ›› Issue (1): 219-230.doi: 10.12122/j.issn.1673-4254.2026.01.24

• • 上一篇    下一篇

基于扩散循环一致性生成对抗网络的骨盆活跃骨髓区域分割方法

卓俐1(), 曾敏1, 谭顺谦1, 梁涛1, 肖巍魏2, 甄鑫1()   

  1. 1.南方医科大学生物医学工程学院,广东 广州 510515
    2.中山大学肿瘤防治中心//华南肿瘤学国家重点实验室//肿瘤医学省部共建协同创新中心,广东 广州 510060
  • 收稿日期:2025-06-13 出版日期:2026-01-20 发布日期:2026-01-16
  • 通讯作者: 甄鑫 E-mail:zhuoli0901@163.com;xinzhen@smu.edu.cn
  • 作者简介:卓 俐,在读硕士研究生,E-mail: zhuoli0901@163.com
  • 基金资助:
    国家自然科学基金(82572381);国家自然科学基金(82573772);国家自然科学基金青年基金(62106058);广东省自然科学基金(2024A1515012100)

Diffusion cycle-consistent generative adversarial networks for pelvic active bone marrow segmentation

Li ZHUO1(), Min ZENG1, Shunqian TAN1, Tao LIANG1, Weiwei XIAO2, Xin ZHEN1()   

  1. 1.School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
    2.Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
  • Received:2025-06-13 Online:2026-01-20 Published:2026-01-16
  • Contact: Xin ZHEN E-mail:zhuoli0901@163.com;xinzhen@smu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(82572381);Supported by Natural Science Foundation for the Youth (NSFY) of China(62106058)

摘要:

目的 建立基于扩散循环一致性生成对抗网络的骨盆活跃骨髓(ABM)分割方法,突破传统解剖图谱方法个体化精度不足的技术瓶颈。 方法 收集253例患者骨盆PET-CT数据,构建三阶段级联跨模态学习框架实现从CT到个体化ABM精准识别。首先通过循环一致性生成对抗网络建立CT-PET双向映射,采用9个残差模块学习跨模态特征关系。设计条件扩散模块基于1000步马尔可夫链实现渐进去噪,融合双向交叉注意力机制动态整合解剖与功能信息。最后构建多尺度渐进式特征金字塔分割网络,在4个尺度层级累积多模态特征实现ABM区域分割。采用峰值信噪比(PSNR)、结构相似性指数(SSIM)、归一化均方误差(NMSE)评估图像合成质量,Dice相似系数(DSC)、平均对称表面距离(ASSD)评估分割性能。 结果 本方法均优于现有方法,PSNR达到26.42±0.63 dB,SSIM达到0.894±0.011,NMSE降至0.0235±0.0026。在ABM分割任务中,平均Dice系数达到0.777±0.023,ASSD降至3.52±0.41 mm。 结论 与传统方法相比,该方法显著提高了个体化分割精度,适用于直肠癌个体化骨髓保护放疗的临床应用。

关键词: 直肠癌, 活跃骨髓, 扩散模型, 生成对抗网络, 图像分割

Abstract:

Objective To establish a pelvic active bone marrow (ABM) segmentation method based on diffusion cycle-consistent generative adversarial networks for improving individualized precision of conventional anatomical atlas-based methods. Methods We collected pelvic PET-CT data from 253 patients and constructed a 3-stage cascaded cross-modal learning framework for precise individualized ABM identification from CT images. The framework used cycle-consistent generative adversarial networks for bidirectional CT-PET mapping, conditional diffusion modules with 1000-step Markov chains for progressive denoising, and multi-scale progressive feature pyramid fusion networks for segmentation. The peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), normalized mean square error (NMSE), Dice similarity coefficient (DSC), and average symmetric surface distance (ASSD) were used for evaluation of the model performance for ABM segmentation. Results The proposed method outperformed the existing methods with a PSNR of 26.42±0.63 dB, an SSIM of 0.894±0.011, and an NMSE of 0.0235±0.0026. For ABM segmentation, the average Dice coefficient of the model reached 0.777±0.023 with an ASSD of 3.52±0.41 mm. Conclusion Compared with the conventional methods, the propose method significantly improves individualized segmentation accuracy of the ABM and is thus suitable use in individualized bone marrow protection radiotherapy for rectal cancer.

Key words: rectal cancer, active bone marrow, diffusion models, generative adversarial networks, image segmentation