南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (8): 1537-1544.doi: 10.12122/j.issn.1673-4254.2024.08.12
• • 上一篇
张银亮(), 骆泽谭, 赵睿, 赵娜, 徐志东, 奥迪, 丛古一, 刘新宇, 郑海伦()
收稿日期:
2024-04-07
出版日期:
2024-08-20
发布日期:
2024-09-06
通讯作者:
郑海伦
E-mail:zhangyinliang0830@163.com;alanhailun@163.com
作者简介:
张银亮,在读硕士研究生,E-mail: zhangyinliang0830@163.com
基金资助:
Yinliang ZHANG(), Zetan LUO, Rui ZHAO, Na ZHAO, Zhidong XU, Di AO, Guyi CONG, Xinyu LIU, Hailun ZHENG()
Received:
2024-04-07
Online:
2024-08-20
Published:
2024-09-06
Contact:
Hailun ZHENG
E-mail:zhangyinliang0830@163.com;alanhailun@163.com
摘要:
目的 探究血根碱(SAN)对结直肠癌细胞增殖及铁死亡的影响。 方法 SW620和HCT-116细胞体外培养,在SW620细胞加入 浓度分别为0、0.5、1、1.5、2、2.5、3 μmol/L的SAN,HCT-116细胞加入0、0.5、0.75、1、1.25、1.5、1.75、2 μmol/L的SAN。采用CCK8法检测检测细胞活力,并计算出IC50;检测SAN对细胞的增殖抑制作用采用集落克隆实验;Transwell实验观测SAN对细胞侵袭迁移力的影响;ROS检测试剂盒通过流式细胞仪分析细胞ROS含量的变化;丙二醛(MDA)检测盒来检测脂质过氧化物的产生。氧化型谷胱甘肽/还原型谷胱甘肽定量试剂盒测定谷胱甘肽(GSH)水平。Western blotting法检测铁死亡相关蛋白(STUB1、GPX4)的表达。 结果 CCK8、集落克隆的结果显示,SAN可显著抑制SW620和HCT-116细胞增殖(P<0.05);Transwell实验结果显示,SAN可抑制SW620和HCT-116细胞侵袭迁移能力(P<0.05);流式细胞术检测显示:SAN显著促进SW620和HCT-116细胞内ROS的产生(P<0.05);MDA检测结果显示,SAN可使SW620和HCT-116细胞内MDA含量增加(P<0.05);GSH检测结果显示,SAN使SW620和HCT-116细胞内GSH下降(P<0.05);Western blotting结果显示,SAN可通过调控STUB1下游蛋白GPX4的下调(P<0.05)。 结论 SAN可通过调节 STUB1/GPX4诱导结直肠癌细胞发生依赖性铁死亡,提供了新治疗结直肠癌的靶点以及实验依据。
张银亮, 骆泽谭, 赵睿, 赵娜, 徐志东, 奥迪, 丛古一, 刘新宇, 郑海伦. 血根碱通过调控STUB1/GPX4诱导直肠癌细胞发生铁死亡[J]. 南方医科大学学报, 2024, 44(8): 1537-1544.
Yinliang ZHANG, Zetan LUO, Rui ZHAO, Na ZHAO, Zhidong XU, Di AO, Guyi CONG, Xinyu LIU, Hailun ZHENG. Sanguinarine induces ferroptosis of colorectal cancer cells by upregulating STUB1 and downregulating GPX4[J]. Journal of Southern Medical University, 2024, 44(8): 1537-1544.
图1 SAN抑制SW620、HCT-116细胞存活并改变其形态及密度, 但Fer-1可恢复部分形态及密度
Fig.1 SAN represses colorectal cancer (CRC) cell viability and induces cell death. A, B: CCK-8 assay of SW620 and HCT-116 cells treated with different concentrations of SAN for 24 h. C, D: SW620 and HCT-116 cell viability following treatment with different concentrations of SAN for 24 and 72 h. E, F: Morphologies of CRC cells treated with SAN in the presence or absence of Fer-1 (1 μmol/L) (Original magnification: ×10). *P<0.05, **P<0.01, ****P<0.0001 vs control group; #P<0.05, ##P<0.01, ###P<0.001, ####P<0.05 vs 24 h group.
图2 SAN抑制SW620 和 HCT-116细胞集落克隆形成并且Fer-1减弱其抑制作用
Fig.2 SAN inhibits colony formation ability of SW620 and HCT-116 cells. A, B: Representative cell colonies after 14 days of SAN treatment in the presence or absence of Fer-1 (1 μmol/L). C, D: Colonies numbers in the 4 groups, demonstrating that SAN-induced SW620 and HCT-116 cell death was effectively blocked by Fer-1. ****P<0.0001 vs control group; #P<0.05, ##P<0.01 vs SAN group.
图3 SAN抑制SW620 及HCT-116细胞迁移及侵袭,且Fer-1可显著逆转此现象
Fig.3 SAN inhibits migration and invasion ability of SW620 and HCT-116 cells A, B: Transwell migration assay of SAN-treated cells (×10). C, D: Number of migrated SW620 and HCT-116 cells. E, F: Transwell invasion assay of SAN-treated cells in the presence or absence of Fer-1 (×10). G, H: Number of migrated SW620 and HCT-116 cells. ****P<0.0001 vs control group; #P<0.05, ##P<0.01, ####P<0.0001 vs SAN group.
图4 SAN干预SW620、HCT116细胞后ROS骤升, Fer-1可显著逆转此作用
Fig.4 SAN induces ROS generation and contributes to ferroptosis in CRC cells. A, B: DCFH-DA probe was used to detected ROS levels in SW620 cells by flow cytometry and statistical analysis by Graphpad Prism. C, D: Flow cytometry was used to detected ROS levels in HCT116 cells and statistical analysis by Graphpad Prism. ****P<0.0001 vs control group; ##P<0.01, ###P<0.001 vs SAN group.
图5 SAN处理后LIP及MDA可上升, 而GSH下降, 且均可被Fer-1阻断
Fig.5 Levels of MDA and GSH in the CRC cells treated with SAN in the presence or absence of Fer-1. A, B: LIP levels in SW620 and HCT-116 cells at 24 h. C, D: MDA content in the cells. E, F: Intracellular GSH content of the cells. **P<0.01, ***P<0.001, ****P<0.0001 vs control group; #P<0.05, ##P<0.01 vs SAN group.
图6 SAN治疗后SW620 和 HCT-116 STUB1表达上调, GPX4下调, 并且此现象均可被Fer-1部分阻断
Fig.6 Effects of SAN on STUB1 and GPX4 expressions in SW620 and HCT-116 cells with or without Fer-1 treatment. A, B: Western blotting for STUB1 and GPX4 expressions in SW620 (A) and HCT-116 cells (B). C-F: Quantitative analysis of protein expressions. *P<0.05, **P<0.01 vs control group; #P<0.05 vs SAN group.
1 | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. |
2 | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-72. |
3 | Ren XP, Zhang L, Xia SJ, et al. A new visual transient elastography technique for grading liver fibrosis in patients with chronic hepatitis B[J]. Ultrasound Q, 2020, 37(2): 105-10. |
4 | Huang LL, Yu XP, Li JL, et al. Effect of liver inflammation on accuracy of FibroScan device in assessing liver fibrosis stage in patients with chronic hepatitis B virus infection[J]. World J Gastroenterol, 2021, 27(7): 641-53. |
5 | 张云飞, 张 特, 马文静, 等. 神农架中草药博落回提取物血根碱的抗肿瘤作用研究进展[J]. 湖北医药学院学报, 2018, 4(5): 476-83. |
6 | 朱丽飞, 王小莉, 曲书昊. 血根碱的药理作用研究进展[J]. 广东化工, 2020, 47(22): 69-70. |
7 | Gong XL, Chen ZH, Han QR, et al. Sanguinarine triggers intrinsic apoptosis to suppress colorectal cancer growth through disassociation between STRAP and MELK[J]. BMC Cancer, 2018, 18(1): 578. |
8 | Olofinsan K, Abrahamse H, George BP. Therapeutic role of alkaloids and alkaloid derivatives in cancer management[J]. Molecules, 2023, 28(14): 5578. |
9 | Wei GX, Xu YH, Peng T, et al. Sanguinarine exhibits antitumor activity via up-regulation of Fas-associated factor 1 in non-small cell lung cancer[J]. J Biochem Mol Toxicol, 2017, 31(8):1002. |
10 | Hałas-Wiśniewska M, Zielińska W, Izdebska M, et al. The synergistic effect of piperlongumine and sanguinarine on the non-small lung cancer[J]. Molecules, 2020, 25(13): 3045. |
11 | Su Q, Wang JJ, Wu Q, et al. Sanguinarine combats hypoxia-induced activation of EphB4 and HIF-1α pathways in breast cancer[J]. Phytomedicine, 2021, 84: 153503. |
12 | Zhu M, Gong ZY, Wu Q, et al. Sanguinarine suppresses migration and metastasis in colorectal carcinoma associated with the inversion of EMT through the Wnt/β-catenin signaling[J]. Clin Transl Med, 2020, 10(1): 1-12. |
13 | Su Q, Wang JJ, Liu F, et al. Blocking Parkin/PINK1-mediated mitophagy sensitizes hepatocellular carcinoma cells to sanguinarine-induced mitochondrial apoptosis[J]. Toxicol In Vitro, 2020, 66: 104840. |
14 | Xu RZ, Wu JC, Luo YB, et al. Sanguinarine represses the growth and metastasis of non-small cell lung cancer by facilitating ferroptosis[J]. Curr Pharm Des, 2022, 28(9): 760-8. |
15 | Alakkal A, Thayyullathil F, Pallichankandy S, et al. Sanguinarine induces H2O2-dependent apoptosis and ferroptosis in human cervical cancer[J]. Biomedicines, 2022, 10(8): 1795. |
16 | Zou YL, Palte MJ, Deik AA, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis[J]. Nat Commun, 2019, 10(1): 1617. |
17 | 何 丹, 李琳霈, 谭小宁, 等. 基于p53/SLC7A11/GPX4信号轴探讨七叶内酯诱导小鼠乳腺癌4T1细胞铁死亡的作用机制[J]. 中国病理生理杂志, 2024, 40(2): 282-90. |
18 | 朱 权, 黄柏胜, 位磊艳, 等. 过表达LncRNA MEG3通过促进铁死亡增强肝癌细胞对顺铂的化疗敏感性[J]. 南方医科大学学报, 2024, 44(1): 17-24. |
19 | Torii S, Shintoku R, Kubota C, et al. An essential role for functional lysosomes in ferroptosis of cancer cells[J]. Biochem J, 2016, 473(6): 769-77. |
20 | Yu HT, Guo PY, Xie XZ, et al. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases[J]. J Cell Mol Med, 2017, 21(4): 648-57. |
21 | Wu W, Geng ZX, Bai HR, et al. Ammonium Ferric Citrate induced Ferroptosis in Non-Small-Cell Lung Carcinoma through the inhibition of GPX4-GSS/GSR-GGT axis activity[J]. Int J Med Sci, 2021, 18(8): 1899-909. |
22 | Jiang XJ, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-82. |
23 | Khan AQ, Mohamed EAN, Hakeem I, et al. Sanguinarine induces apoptosis in papillary thyroid cancer cells via generation of reactive oxygen species[J]. Molecules, 2020, 25(5): 1229. |
24 | Zhang Y, Huang WR. Sanguinarine induces apoptosis of human lens epithelial cells by increasing reactive oxygen species via the MAPK signaling pathway[J]. Mol Med Rep, 2019, 19(5): 4449-56. |
25 | Kim S, Lee TJ, Leem J, et al. Sanguinarine-induced apoptosis: generation of ROS, down-regulation of Bcl-2, c-FLIP, and synergy with TRAIL[J]. J Cell Biochem, 2008, 104(3): 895-907. |
26 | Su LJ, Zhang JH, Gomez H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J]. Oxid Med Cell Longev, 2019, 2019: 5080843. |
27 | Wang WM, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755): 270-4. |
28 | Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis[J]. Free Radic Biol Med, 2019, 133: 130-43. |
29 | Xia HB, Wu Y, Zhao J, et al. N6-Methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2[J]. Cell Death Differ, 2023, 30(5): 1293-304. |
30 | Kong PZ, Yang MM, Wang Y, et al. Ferroptosis triggered by STAT1- IRF1-ACSL4 pathway was involved in radiation-induced intestinal injury[J]. Redox Biol, 2023, 66: 102857. |
31 | Song XX, Zhu S, Chen P, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system xc - activity[J]. Curr Biol, 2018, 28(15): 2388-99.e5. |
32 | Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4[J]. Free Radic Biol Med, 2020, 152: 175-85. |
33 | Ding YH, Chen XP, Liu C, et al. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells[J]. J Hematol Oncol, 2021, 14(1): 19. |
34 | Sun XF, Zhang Q, Lin XH, et al. Imatinib induces ferroptosis in gastrointestinal stromal tumors by promoting STUB1-mediated GPX4 ubiquitination[J]. Cell Death Dis, 2023, 14(12): 839. |
35 | Wang J, Zhang HY, Chen LM, et al. CircDCBLD2 alleviates liver fibrosis by regulating ferroptosis via facilitating STUB1-mediated PARK7 ubiquitination degradation[J]. J Gastroenterol, 2024, 59(3): 229-49. |
[1] | 欧阳明子, 崔佳琦, 王慧, 梁正, 皮大锦, 陈利国, 陈前军, 吴迎朝. 开心散通过减轻前额叶皮质铁死亡缓解小鼠的阿霉素化疗性抑郁[J]. 南方医科大学学报, 2024, 44(8): 1441-1449. |
[2] | 赵娜, 沈梦迪, 赵睿, 奥迪, 骆泽谭, 张银亮, 徐志东, 范方田, 郑海伦. 血根碱通过调控Nrf2/NF-κB通路缓解小鼠溃疡性结肠炎[J]. 南方医科大学学报, 2024, 44(8): 1467-1475. |
[3] | 王元国, 张鹏. 铁死亡抑制基因在食管癌中的高表达分析[J]. 南方医科大学学报, 2024, 44(7): 1389-1396. |
[4] | 何华星, 刘璐琳, 刘颖茵, 陈纳川, 孙素霞. 丁酸钠与索拉非尼可能通过YAP诱导铁死亡协同抑制肝癌细胞增殖[J]. 南方医科大学学报, 2024, 44(7): 1425-1430. |
[5] | 任智先, 周倍贤, 王林鑫, 李菁, 张荣平, 潘锡平. 5-羟基-6,7-二甲氧基黄酮抑制流感病毒诱导A549细胞炎症反应和铁死亡的作用及机制[J]. 南方医科大学学报, 2024, 44(6): 1070-1078. |
[6] | 张方圆, 刘刚. 右美托咪定通过激活Nrf2/HO-1/GPX4通路抑制肾小管上皮细胞的铁死亡[J]. 南方医科大学学报, 2024, 44(6): 1135-1140. |
[7] | 王南, 石斌, 马小兰, 吴伟超, 曹佳. FMRP通过激活RAS/MAPK信号通路抑制结直肠肿瘤细胞的铁死亡[J]. 南方医科大学学报, 2024, 44(5): 885-893. |
[8] | 李淑贤, 于淑平, 穆亚铭, 王 凯, 刘 玉, 张美华. 二甲双胍通过抑制铁死亡改善PM2.5导致的胎盘滋养细胞功能损伤[J]. 南方医科大学学报, 2024, 44(3): 437-446. |
[9] | 孙 硕, 黄 鑫, 李国东, 张春云, 卢泽梅, 张伟伟, 李泽彦, 杨清竹. 敲低结肠癌转移相关基因1促进RSL3诱导的结直肠癌细胞铁死亡[J]. 南方医科大学学报, 2024, 44(1): 173-178. |
[10] | 张晓红, 赵 品, 蒯建科, 常 超, 袁 庆. 亚精胺通过抑制细胞凋亡、ROS生成及铁死亡减轻脂多糖诱导的小鼠心肌损伤[J]. 南方医科大学学报, 2024, 44(1): 166-172. |
[11] | 朱 权, 黄柏胜, 位磊艳, 罗奇志. 过表达LncRNA MEG3通过促进铁死亡增强肝癌细胞对顺铂的化疗敏感性[J]. 南方医科大学学报, 2024, 44(1): 17-24. |
[12] | 黄 奕, 林丽珊, 黄浩华, 董航明. VDAC1通过诱导气道上皮细胞铁死亡参与屋尘螨诱导的哮喘小鼠气道炎症[J]. 南方医科大学学报, 2023, 43(8): 1333-1338. |
[13] | 颜 畅, 刘 爽, 宋庆志, 胡艺冰. 二甲双胍通过抑制线粒体氧化磷酸化降低结直肠癌干细胞的自我更新能力[J]. 南方医科大学学报, 2023, 43(8): 1279-1286. |
[14] | 魏 可, 石纪雯, 肖雨寒, 王文锐, 杨清玲, 陈昌杰. miR-30e-5p过表达促进结直肠癌细胞的增殖和迁移:基于下调PTEN激活CXCL12轴[J]. 南方医科大学学报, 2023, 43(7): 1081-1092. |
[15] | 张雪芳, 陈延华, 李宗恒, 尚 靖, 袁泽婷, 邓皖利, 骆 莺, 韩 娜, 殷佩浩, 殷 军. 六神丸治疗小鼠结肠炎相关性结直肠癌的作用机制:基于网络药理学和体内验证方法[J]. 南方医科大学学报, 2023, 43(7): 1051-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||