南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (12): 2347-2358.doi: 10.12122/j.issn.1673-4254.2024.12.10
• • 上一篇
收稿日期:
2024-06-27
出版日期:
2024-12-20
发布日期:
2024-12-26
通讯作者:
韩继明
E-mail:yadxzhh@yau.edu.cn;1909983949@qq.com;mthgh_jm@163.com
作者简介:
张华华,硕士,E-mail: yadxzhh@yau.edu.cn基金资助:
Huahua ZHANG1(), Qingyin TA1,2(
), Yun FENG1, Jiming HAN1(
)
Received:
2024-06-27
Online:
2024-12-20
Published:
2024-12-26
Contact:
Jiming HAN
E-mail:yadxzhh@yau.edu.cn;1909983949@qq.com;mthgh_jm@163.com
Supported by:
摘要:
目的 探讨Holliday交叉识别蛋白(HJURP)在肿瘤发生、进展及免疫治疗中的作用。 方法 采用TCGA、GTEx、SangerBox和TIMER 2.0数据库等生物信息学方法分析HJURP在各类癌症中的表达水平及其与预后、临床分期和免疫细胞浸润的关联。利用LinkedOmics数据库分析肾透明细胞癌(KIRC)中HJURP的相关基因及其潜在功能。通过免疫组织化学分析、Western blotting和qRT-PCR实验验证HJURP在KIRC中的表达,并设计靶向HJURP的小干扰RNA,评估其对KIRC细胞增殖、迁移能力的影响。 结果 HJURP在包含KIRC的26种肿瘤组织中表达升高(P<0.05),且与包括KIRC的5种肿瘤患者的预后呈负相关(P<0.05)。HJURP的表达水平与肿瘤的临床分期及免疫细胞浸润密切相关。在KIRC中,HJURP表达升高(P<0.0001),且与TNM分期(P<0.05)、Stage分期(P<0.01)及免疫细胞浸润呈正相关。基因本体论功能分析结果显示:HJURP在生物学过程中主要富集于生物调节和代谢过程等;在细胞组分方面主要富集于细胞膜与细胞核等;在分子功能方面主要富集于蛋白质结合和离子结合等。组织和细胞水平实验显示,HJURP在KIRC中高表达(P<0.001),且沉默HJURP抑制KIRC细胞的增殖与迁移(P<0.01)。 结论 HJURP可作为KIRC预后和免疫治疗的预测因子,并在KIRC细胞的恶性行为中发挥促进作用。
张华华, 拓庆银, 冯芸, 韩继明. Holliday交叉识别蛋白是肾透明细胞癌的潜在预测和预后生物标记物[J]. 南方医科大学学报, 2024, 44(12): 2347-2358.
Huahua ZHANG, Qingyin TA, Yun FENG, Jiming HAN. Holliday junction-recognizing protein is a potential predictive and prognostic biomarker for kidney renal clear cell carcinoma[J]. Journal of Southern Medical University, 2024, 44(12): 2347-2358.
图1 HJURP在泛癌中的表达
Fig.1 Expression of Holliday junction-recognizing protein (HJURP) in pan-cancer. A: Expression of HJURP in different human tumors based on TCGA database. B: HJURP expression in 26 human tumors analyzed by integrating normal tissue data from GTEx database and TCGA tumor tissue. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs Normal group.
图2 HJURP的表达水平与泛癌预后关系的生存森林图
Fig.2 Survival forest map for prognostic analysis of HJURP expression in pan-cancer. OS: Overall survival; DSS: Disease-specific survival; DFI: Disease-free interval; PFI: Progression-free interval.
图3 HJURP表达与临床病理特征之间的相关性
Fig.3 Associations between HJURP expression and clinicopathological characteristics of pan-cancer. A: T grade. B: N grade. C: M status. D: clinical stage. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs T1, N0, M0 or Stage I.
图5 HJURP表达与KIRC临床病理特征及预后的相关性
Fig.5 Correlation of HJURP expression with clinicopathological characteristics and prognosis of kidney renal clear cell carcinoma (KIRC). A: T grade. B: N grade. C: M status. D: clinical stage. E: HR (95% CI) for OS. F: HR (95% CI) for DSS. G: HR (95% CI) for DFI. H: HR (95% CI) for PFI. *P<0.05, **P<0.01, ***P<0.001 vs T1, N0, M0, or Stage I.
图6 KIRC中HJURP相关基因分析及其GO功能分析
Fig.6 Analysis of HJURP-related genes in KIRC and the GO function. A: Volcanic plot of HJURP-related genes in KIRC. B: Heat map of genes positively associated with HJURP in KIRC. C: Heat map of genes negatively associated with HJURP in KIRC. D: GO function analysis of HJURP in KIRC.
图7 HJURP在KIRC中的表达及HJURP的干扰片段的效率验证
Fig.7 Expression of HJURP in KIRC and validation of the efficiency of HJURP interference. A: HJURP in adjacent and KIRC tissues detected by immunohistochemistry (×100). B: Differential expression of HJURP in KIRC verified by Western blotting. C: Expression of HJURP mRNA in KIRC cell lines detected by qRT-PCR. D, E: Transfection efficiency of si-HJURP sequences assessed by Western blotting (D) and qRT-PCR (E). ***P<0.001 vs HK-2 or siNC group.
图8 沉默HJURP体外抑制KIRC细胞的增殖和迁移
Fig.8 Silencing of HJURP suppresses proliferation and migration of KIRC cells in vitro. A:CCK-8 assays for cell viability. B: Clone formation test to detect the changes of cell clone formation ability. C, D: Flow cytometry for analyzing cell cycle distribution in 786-O and Caki-1 cells (Mean±SD, n=3). E: Changes in cell cycle-related proteins after silencing HJURP. F: Scratch test for assessing cell migration ability (×100). G: Transwell assays for assessing cell migration (×200). H: Western blotting for detecting cell migration-related protein expressions including E-cadherin, N-cadherin, MMP2 and vimentin. **P<0.01, ***P<0.001 vs siNC group.
1 | Zheng RS, Chen R, Han BF, et al. Cancer incidence and mortality in China, 2022[J]. Zhonghua Zhong Liu Za Zhi, 2024, 46(3): 221-31. |
2 | Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma[J]. N Engl J Med, 2015, 372(4): 311-9. |
3 | Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma[J]. N Engl J Med, 2015, 373(1): 23-34. |
4 | Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial[J]. Lancet, 2014, 384(9948): 1109-17. |
5 | Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26): 2455-65. |
6 | Weinstein JN, Collisson EA, Mills GB, et al. The Cancer Genome Atlas Pan-Cancer analysis project[J]. Nat Genet, 2013, 45(10): 1113-20. |
7 | Kato T, Sato N, Hayama S, et al. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells[J]. Cancer Res, 2007, 67(18): 8544-53. |
8 | Barnhart MC, Kuich PH, Stellfox ME, et al. HJURP is a CENP-a chromatin assembly factor sufficient to form a functional de novo kinetochore[J]. J Cell Biol, 2011, 194(2): 229-43. |
9 | Wei Y, Ouyang GL, Yao WX, et al. Knockdown of HJURP inhibits non-small cell lung cancer cell proliferation, migration, and invasion by repressing Wnt/β-catenin signaling[J]. Eur Rev Med Pharmacol Sci, 2019, 23(9): 3847-56. |
10 | Kang DH, Woo J, Kim H, et al. Prognostic relevance of HJURP expression in patients with surgically resected colorectal cancer[J]. Int J Mol Sci, 2020, 21(21): 7928. |
11 | Wang CJ, Li X, Shi P, et al. Holliday junction recognition protein promotes pancreatic cancer growth and metastasis via modulation of the MDM2/p53 signaling[J]. Cell Death Dis, 2020, 11(5): 386. |
12 | Cao R, Wang G, Qian KY, et al. Silencing of HJURP induces dysregulation of cell cycle and ROS metabolism in bladder cancer cells via PPARγ-SIRT1 feedback loop[J]. J Cancer, 2017, 8(12): 2282-95. |
13 | Wang L, Qu JL, Liang Y, et al. Identification and validation of key genes with prognostic value in non-small-cell lung cancer via integrated bioinformatics analysis[J]. Thorac Cancer, 2020, 11(4): 851-66. |
14 | Gu Y, Li J, Guo DL, et al. Identification of 13 key genes correlated with progression and prognosis in hepatocellular carcinoma by weighted gene co-expression network analysis[J]. Front Genet, 2020, 11: 153. |
15 | Hu Z, Huang G, Sadanandam A, et al. The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer[J]. Breast Cancer Res, 2010, 12(2): R18. |
16 | Fu FQ, Zhang Y, Gao ZD, et al. Development and validation of a five-gene model to predict postoperative brain metastasis in operable lung adenocarcinoma[J]. Int J Cancer, 2020, 147(2): 584-92. |
17 | Shen WT, Song ZG, Zhong X, et al. Sangerbox: a comprehensive, interaction-friendly clinical bioinformatics analysis platform[J]. Imeta, 2022, 1(3): e36. |
18 | Li TW, Fan JY, Wang BB, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21): e108-10. |
19 | Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data[J]. Nat Commun, 2013, 4: 2612. |
20 | Telloni SM. Tumor staging and grading: a primer[J]. Methods Mol Biol, 2017, 1606: 1-17. |
21 | Vasaikar SV, Straub P, Wang J, et al. LinkedOmics: analyzing multi-omics data within and across 32 cancer types[J]. Nucleic Acids Res, 2018, 46(D1): D956-63. |
22 | Li L, Yuan Q, Chu YM, et al. Advances in holliday junction recognition protein (HJURP): structure, molecular functions, and roles in cancer[J]. Front Cell Dev Biol, 2023, 11: 1106638. |
23 | Chen TC, Zhou LF, Zhou Y, et al. HJURP promotes epithelial-to-mesenchymal transition via upregulating SPHK1 in hepatocellular carcinoma[J]. Int J Biol Sci, 2019, 15(6): 1139-47. |
24 | Yang Y, Yuan JY, Liu ZZ, et al. The expression, clinical relevance, and prognostic significance of HJURP in cholangiocarcinoma[J]. Front Oncol, 2022, 12: 972550. |
25 | Zhang F, Yuan DB, Song JK, et al. HJURP is a prognostic biomarker for clear cell renal cell carcinoma and is linked to immune infiltration[J]. Int Immunopharmacol, 2021, 99: 107899. |
26 | Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019, 79(18): 4557-66. |
27 | Luo DC, Liao SN, Liu Y, et al. Holliday cross-recognition protein HJURP: association with the tumor microenvironment in hepatocellular carcinoma and with patient prognosis[J]. Pathol Oncol Res, 2022, 28: 1610506. |
28 | Liu L, Zhang ZF, Xia XL, et al. KIF18B promotes breast cancer cell proliferation, migration and invasion by targeting TRIP13 and activating the Wnt/β‑catenin signaling pathway[J]. Oncol Lett, 2022, 23(4): 112. |
29 | Xie JL, Wang B, Luo WJ, et al. Upregulation of KIF18B facilitates malignant phenotype of esophageal squamous cell carcinoma by activating CDCA8/mTORC1 pathway[J]. J Clin Lab Anal, 2022, 36(10): e24633. |
30 | Koike Y, Yin CZ, Sato Y, et al. TPX2 is a prognostic marker and promotes cell proliferation in neuroblastoma[J]. Oncol Lett, 2022, 23(4): 136. |
31 | Li LZ, Jiang PC, Hu WM, et al. AURKB promotes bladder cancer progression by deregulating the p53 DNA damage response pathway via MAD2L2[J]. J Transl Med, 2024, 22(1): 295. |
[1] | 陈孝华, 鲁辉, 王子良, 王炼, 夏勇生, 耿志军, 张小凤, 宋雪, 王月月, 李静, 胡建国, 左芦根. ABI2在胃癌进展和预后中的作用及其调控机制[J]. 南方医科大学学报, 2024, 44(9): 1653-1661. |
[2] | 薛良军, 谈秋瑜, 许静文, 冯璐, 李文锦, 颜亮, 李玉磊. MiR-6838-5p过表达下调DDR1基因表达抑制乳腺癌MCF-7细胞的增殖[J]. 南方医科大学学报, 2024, 44(9): 1677-1684. |
[3] | 纪凯, 于冠宇, 周乐其, 张天帅, 凌潜龙, 满文江, 朱冰, 张卫. HNRNPA1基因在结直肠癌组织中高表达及其潜在的诊断和治疗价值[J]. 南方医科大学学报, 2024, 44(9): 1685-1695. |
[4] | 庞一丹, 刘雅, 陈思嫒, 张荆雷, 曾今, 潘元明, 安娟. SPAG5在胃癌细胞恶性增殖中的生物学作用[J]. 南方医科大学学报, 2024, 44(8): 1497-1507. |
[5] | 从小凡, 陈腾, 李硕, 王媛媛, 周龙云, 李小龙, 张配, 孙小锦, 赵素容. 双氢青蒿素通过促进活性氧的产生增强鼻咽癌细胞对顺铂诱导凋亡的敏感性[J]. 南方医科大学学报, 2024, 44(8): 1553-1560. |
[6] | 柯志勇, 黄子城, 何若琳, 张倩, 陈思旭, 崔忠凯, 丁晶. 抑制Hmga2促进小鼠脂肪间充质干细胞成骨分化并加速骨缺损修复[J]. 南方医科大学学报, 2024, 44(7): 1227-1235. |
[7] | 郑孟冬, 刘妍, 刘娇娇, 康巧珍, 王婷. 蛋白4.1R对肝细胞HL-7702增殖、凋亡以及糖酵解的影响[J]. 南方医科大学学报, 2024, 44(7): 1355-1360. |
[8] | 何华星, 刘璐琳, 刘颖茵, 陈纳川, 孙素霞. 丁酸钠与索拉非尼可能通过YAP诱导铁死亡协同抑制肝癌细胞增殖[J]. 南方医科大学学报, 2024, 44(7): 1425-1430. |
[9] | 房锦存, 刘立威, 林俊豪, 陈逢生. CDHR2过表达通过抑制PI3K/Akt通路抑制乳腺癌细胞增殖[J]. 南方医科大学学报, 2024, 44(6): 1117-1125. |
[10] | 崔芝, 马萃娇, 王倩茹, 陈金豪, 严子阳, 杨建林, 吕亚丰, 曹春雨. 表达 TGF-βⅡ受体的腺相关病毒载体抑制小鼠三阴性乳腺癌4T1细胞的增殖和肺转移[J]. 南方医科大学学报, 2024, 44(5): 818-826. |
[11] | 夏勇生, 王炼, 陈孝华, 张雨路, 孙奥飞, 陈德利. 过表达TSR2通过下调PI3K/AKT信号通路抑制胃癌细胞的增殖和侵袭[J]. 南方医科大学学报, 2024, 44(5): 913-919. |
[12] | 黄秋虎, 周 建, 王子珍, 杨 堃, 陈政纲. miR-26b-3p 靶向 CREB1 调控神经胶质瘤细胞的增殖、迁移及侵袭[J]. 南方医科大学学报, 2024, 44(3): 578-584. |
[13] | 朱 瑾, 欧阳欣, 刘 屿, 钱叶梅, 夏 斌, 施延安, 俞力夫. miR-132-3p/CAMTA1对I-125粒子处理的面神经损伤大鼠施万细胞的调控作用[J]. 南方医科大学学报, 2024, 44(3): 571-577. |
[14] | 沈梦迪, 赵 娜, 邓晓晶, 邓 敏. COX6B2在胃癌组织中高表达并影响患者的远期预后:基于抑制p53信号调控胃癌细胞的增殖及细胞周期[J]. 南方医科大学学报, 2024, 44(2): 289-297. |
[15] | 王 娟, 杨雯钦, 刘 进, 石金凤, 肖 萍, 李美香. 脂联素通过上调PPARα/HOXA10通路改善多囊卵巢综合征大鼠的子宫内膜容受性[J]. 南方医科大学学报, 2024, 44(2): 298-307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||