Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (7): 1563-1570.doi: 10.12122/j.issn.1673-4254.2025.07.24
Ziyu ZHENG1(), Xiaying YANG3(
), Shengjie WU2(
), Shijie ZHANG3, Guorong LYU3, Peizhong LIU2(
), Jun WANG4(
), Shaozheng HE3(
)
Received:
2025-03-28
Online:
2025-07-20
Published:
2025-07-17
Contact:
Peizhong LIU, Jun WANG, Shaozheng HE
E-mail:zhzy@hqu.edu.cn;19942911457@163.com;1136132863@qq.com;pzliu@hqu.edu.cn;490089243@qq.com;1251282489@qq.com
Ziyu ZHENG, Xiaying YANG, Shengjie WU, Shijie ZHANG, Guorong LYU, Peizhong LIU, Jun WANG, Shaozheng HE. A multi-feature fusion-based model for fetal orientation classification from intrapartum ultrasound videos[J]. Journal of Southern Medical University, 2025, 45(7): 1563-1570.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.07.24
Classes | Train (Number of images) | Val (Number of images) | Video Test (number of video/number of frames) |
---|---|---|---|
OA | 1006 | 125 | 3/482 |
OP | 1708 | 213 | 3/491 |
OT | 1270 | 158 | 2/346 |
Total | 3984 | 496 | 8/1319 |
Tab.1 Data distribution
Classes | Train (Number of images) | Val (Number of images) | Video Test (number of video/number of frames) |
---|---|---|---|
OA | 1006 | 125 | 3/482 |
OP | 1708 | 213 | 3/491 |
OT | 1270 | 158 | 2/346 |
Total | 3984 | 496 | 8/1319 |
Model evaluation metrics | Definition |
---|---|
ACC | |
Precision (P) | |
Recall (R) | |
PR-AUC | The average precision, which is the average of the precision over different recall points, is shown as the area under the P-R curve on the P-R curve plot |
kappa | |
ROC-AUC | The area under the ROC curve |
Tab.2 Definition of the model evaluation metrics
Model evaluation metrics | Definition |
---|---|
ACC | |
Precision (P) | |
Recall (R) | |
PR-AUC | The average precision, which is the average of the precision over different recall points, is shown as the area under the P-R curve on the P-R curve plot |
kappa | |
ROC-AUC | The area under the ROC curve |
Label | Ours | EfficientNet_b2 | DenseNet169 | ResNet50 | Yolo8s_cls | ConvNeXt | MPViT | Swim transformer |
---|---|---|---|---|---|---|---|---|
OA1 | OA | OA | OP | OA | OA | OP | OA | OT |
OP1 | OP | OP | OP | OP | OP | OP | OA | OP |
OT1 | OT | OT | OT | OT | OT | OT | OA | OT |
OA2 | OA | OA | OA | OA | OA | OA | OA | OT |
OP2 | OP | OP | OP | OP | OP | OP | OA | OP |
OA3 | OA | OA | OA | OA | OA | OA | OA | OT |
OP3 | OP | OP | OP | OP | OP | OP | OA | OT |
OT3 | OT | OT | OT | OT | OT | OT | OA | OT |
Tab.3 Classification results of videos by different models
Label | Ours | EfficientNet_b2 | DenseNet169 | ResNet50 | Yolo8s_cls | ConvNeXt | MPViT | Swim transformer |
---|---|---|---|---|---|---|---|---|
OA1 | OA | OA | OP | OA | OA | OP | OA | OT |
OP1 | OP | OP | OP | OP | OP | OP | OA | OP |
OT1 | OT | OT | OT | OT | OT | OT | OA | OT |
OA2 | OA | OA | OA | OA | OA | OA | OA | OT |
OP2 | OP | OP | OP | OP | OP | OP | OA | OP |
OA3 | OA | OA | OA | OA | OA | OA | OA | OT |
OP3 | OP | OP | OP | OP | OP | OP | OA | OT |
OT3 | OT | OT | OT | OT | OT | OT | OA | OT |
Model | PR-AUC | ROC-AUC | ACC | kappa |
---|---|---|---|---|
EfficientNet_b2 | 0.92545 | 0.96126 | 0.91431 | 0.86892 |
DenseNet169 | 0.92836 | 0.96201 | 0.91519 | 0.86879 |
ResNet50 | 0.92621 | 0.95507 | 0.92307 | 0.88284 |
Yolo8s_cls | 0.87686 | 0.94205 | 0.87456 | 0.80322 |
ConvNeXt | 0.91083 | 0.94177 | 0.91145 | 0.86351 |
MPViT | 0.47209 | 0.57401 | 0.37571 | 0.00162 |
Swim transformer | 0.49753 | 0.62991 | 0.48685 | 0.22014 |
Yolov8+CBAM | 0.88311 | 0.94350 | 0.90500 | 0.85025 |
Yolov8+CSAM | 0.55933 | 0.75915 | 0.64312 | 0.42443 |
Ours | 0.91545 | 0.95944 | 0.92499 | 0.88553 |
Tab.4 Comparison of results from different models
Model | PR-AUC | ROC-AUC | ACC | kappa |
---|---|---|---|---|
EfficientNet_b2 | 0.92545 | 0.96126 | 0.91431 | 0.86892 |
DenseNet169 | 0.92836 | 0.96201 | 0.91519 | 0.86879 |
ResNet50 | 0.92621 | 0.95507 | 0.92307 | 0.88284 |
Yolo8s_cls | 0.87686 | 0.94205 | 0.87456 | 0.80322 |
ConvNeXt | 0.91083 | 0.94177 | 0.91145 | 0.86351 |
MPViT | 0.47209 | 0.57401 | 0.37571 | 0.00162 |
Swim transformer | 0.49753 | 0.62991 | 0.48685 | 0.22014 |
Yolov8+CBAM | 0.88311 | 0.94350 | 0.90500 | 0.85025 |
Yolov8+CSAM | 0.55933 | 0.75915 | 0.64312 | 0.42443 |
Ours | 0.91545 | 0.95944 | 0.92499 | 0.88553 |
Modules | PR-AUC | ROC-AUC | ACC | kappa | |||
---|---|---|---|---|---|---|---|
CBAM | PSA | ECA | AIFI | ||||
0 | 0 | 0 | 0 | 0.87686 | 0.94205 | 0.87456 | 0.80322 |
1 | 0 | 0 | 0 | 0.88311 | 0.94350 | 0.90500 | 0.85025 |
0 | 1 | 0 | 0 | 0.91193 | 0.94745 | 0.89150 | 0.83678 |
0 | 0 | 1 | 0 | 0.89821 | 0.94370 | 0.89865 | 0.84478 |
0 | 0 | 0 | 1 | 0.86844 | 0.93363 | 0.86554 | 0.79148 |
1 | 1 | 1 | 1 | 0.91545 | 0.95944 | 0.92499 | 0.88553 |
Tab.5 Ablation experiment
Modules | PR-AUC | ROC-AUC | ACC | kappa | |||
---|---|---|---|---|---|---|---|
CBAM | PSA | ECA | AIFI | ||||
0 | 0 | 0 | 0 | 0.87686 | 0.94205 | 0.87456 | 0.80322 |
1 | 0 | 0 | 0 | 0.88311 | 0.94350 | 0.90500 | 0.85025 |
0 | 1 | 0 | 0 | 0.91193 | 0.94745 | 0.89150 | 0.83678 |
0 | 0 | 1 | 0 | 0.89821 | 0.94370 | 0.89865 | 0.84478 |
0 | 0 | 0 | 1 | 0.86844 | 0.93363 | 0.86554 | 0.79148 |
1 | 1 | 1 | 1 | 0.91545 | 0.95944 | 0.92499 | 0.88553 |
[1] | Leung KY. Applications of advanced ultrasound technology in obstetrics[J]. Diagnostics (Basel), 2021, 11(7): 1217. doi:10.3390/diagnostics11071217 |
[2] | Malvasi A. Intrapartum Ultrasonography for Labor Management[M]. Cham: Springer International Publishing, 2021. doi:10.1007/978-3-030-57595-3 |
[3] | Yang TZ, Luo H. Practical Ultrasonography in Obstetrics and Gynecology[M]. Cham: Springer Nature Singapore, 2022. doi:10.1007/978-981-16-4477-1 |
[4] | Wiafe YA, Whitehead B, Venables H, et al. Comparing intrapartum ultrasound and clinical examination in the assessment of fetal head position in African women[J]. J Ultrason, 2019, 19(79): 249-54. doi:10.15557/JoU.2019.0037 |
[5] | 张勤建, 颜建英. 产时超声辅助产程管理[J]. 中国实用妇科与产科杂志, 2024, 40(2): 142-7. |
[6] | 孙璐鑫, 韩英杰. 产时超声在产程监测中的应用[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 84-8. |
[7] | Ghi T, Eggebø T, Lees C, et al. ISUOG Practice Guidelines: intrapartum ultrasound[J]. Ultrasound Obstet Gynecol, 2018, 52(1): 128-39. doi:10.1002/uog.19072 |
[8] | Lieberman E, Davidson K, Lee-Parritz A, et al. Changes in fetal position during labor and their association with epidural analgesia[J]. Obstet Gynecol, 2005, 105(5 Pt 1): 974-82. doi:10.1097/01.AOG.0000158861.43593.49 |
[9] | Ghi T, Dall’Asta A. Sonographic evaluation of the fetal head position and attitude during labor[J]. Am J Obstet Gynecol, 2024, 230(3S): S890-900. doi:10.1016/j.ajog.2022.06.003 |
[10] | Guittier MJ, Othenin-Girard V, Irion O, et al. Maternal positioning to correct occipito-posterior fetal position in labour: a randomised controlled trial[J]. BMC Pregnancy Childbirth, 2014, 14: 83. doi:10.1186/1471-2393-14-83 |
[11] | 杨建成, 马 琰, 徐 颖, 等. 胎方位异常阴道分娩第二产程会阴超声测量产程进展参数的临床研究[J]. 现代妇产科进展, 2024, 33(9): 656-61. |
[12] | Bertholdt C, Piffer A, Pol H, et al. Management of persistent occiput posterior position: The added value of manual rotation[J]. Int J Gynaecol Obstet, 2022, 157(3): 613-7. doi:10.1002/ijgo.13874 |
[13] | Vitner D, Paltieli Y, Haberman S, et al. Prospective multicenter study of ultrasound-based measurements of fetal head station and position throughout labor[J]. Ultrasound Obstet Gynecol, 2015, 46(5): 611-5. doi:10.1002/uog.14821 |
[14] | Senécal J, Xiong X, Fraser WD, et al. Effect of fetal position on second-stage duration and labor outcome[J]. Obstet Gynecol, 2005, 105(4): 763-72. doi:10.1097/01.aog.0000154889.47063.84 |
[15] | de Vries B, Phipps H, Kuah S, et al. Transverse occiput position: using manual rotation to aid normal birth and improve delivery OUTcomes (TURN-OUT): a study protocol for a randomised controlled trial[J]. Trials, 2015, 16: 362. doi:10.1186/s13063-015-0854-3 |
[16] | Simkin P. The fetal occiput posterior position: state of the science and a new perspective[J]. Birth, 2010, 37(1): 61-71. doi:10.1111/j.1523-536X.2009.00380.x |
[17] | Fiorentino MC, Villani FP, Di Cosmo M, et al. A review on deep-learning algorithms for fetal ultrasound-image analysis[J]. Med Image Anal, 2023, 83: 102629. doi:10.1016/j.media.2022.102629 |
[18] | Burgos-Artizzu XP, Coronado-Gutiérrez D, Valenzuela-Alcaraz B, et al. Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes[J]. Sci Rep, 2020, 10(1): 10200. doi:10.1038/s41598-020-67076-5 |
[19] | Ghi T, Conversano F, Zegarra RR, et al. Novel artificial intelligence approach for automatic differentiation of fetal occiput anterior and non-occiput anterior positions during labor[J]. Ultrasound Obstet Gynecol, 2022, 59(1): 93-9. doi:10.1002/uog.23739 |
[20] | Dall’Asta A, Conversano F, Minopoli M, et al. OC02.02: Artificial intelligence for automatic classification of anterior/posterior/transverse occiput positions using transperineal sonography[J]. Ultrasound Obstet Gynecol, 2022, 60(S1): 4-5. doi:10.1002/uog.24995 |
[21] | Eisenstat J, Wagner MW, Vidarsson L, et al. Fet-net algorithm for automatic detection of fetal orientation in fetal MRI[J]. Bioengineering (Basel), 2023, 10(2): 140. doi:10.3390/bioengineering10020140 |
[22] | Zegarra RR, Conversano F, Dall’Asta A, et al. A deep learning approach to identify the fetal head position using transperineal ultrasound during labor[J]. Eur J Obstet Gynecol Reprod Biol, 2024, 301: 147-53. doi:10.1016/j.ejogrb.2024.08.012 |
[23] | Woo S, Park J, Lee JY, et al. CBAM: convolutional block attention module[M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. doi:10.1007/978-3-030-01234-2_1 |
[24] | Wang QL, Wu BG, Zhu PF, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 11531-9. doi:10.1109/cvpr42600.2020.01155 |
[25] | Wang A, Chen H, Liu LH, et al. YOLOv10: real-time end-to-end object detection[EB/OL]. 2024: 2405.14458. . |
[26] | Zhao YA, Lv WY, Xu SL, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. 2023: 2304.08069. . doi:10.1109/cvpr52733.2024.01605 |
[27] | Tan MX, Le QV. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. 2019: 1905.11946. . doi:10.1007/978-1-4842-6168-2_10 |
[28] | Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 2261-9. doi:10.1109/cvpr.2017.243 |
[29] | He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-8. doi:10.1109/cvpr.2016.90 |
[30] | Liu Z, Mao HZ, Wu CY, et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 11966-76. doi:10.1109/cvpr52688.2022.01167 |
[31] | Lee Y, Kim J, Willette J, et al. MPViT: multi-path vision transformer for dense prediction[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 7277-86. doi:10.1109/cvpr52688.2022.00714 |
[32] | Liu Z, Lin YT, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 9992-10002. doi:10.1109/iccv48922.2021.00986 |
[33] | Yu Hung AL, Zheng HX, Zhao K, et al. CSAM: a 2.5D cross-slice attention module for anisotropic volumetric medical image segmentation[J]. IEEE Winter Conf Appl Comput Vis, 2024, 2024: 5911-20. doi:10.1109/wacv57701.2024.00582 |
[1] | Huanyu JI, Rui WANG, Shengxiang GAO, Wengang CHE. SG-UNet: a melanoma segmentation model enhanced with global attention and self-calibrated convolution [J]. Journal of Southern Medical University, 2025, 45(6): 1317-1326. |
[2] | Suqiang LI, Zhouyang WANG, Sixian CHAN, Xiaolong ZHOU. AConvLSTM U-Net: a multi-scale jaw cyst segmentation model based on bidirectional dense connection and attention mechanism [J]. Journal of Southern Medical University, 2025, 45(5): 1082-1092. |
[3] | Yuying REN, Lingxiao HUANG, Fang DU, Xinbo YAO. An efficient and lightweight skin pathology detection method based on multi-scale feature fusion using an improved RT-DETR model [J]. Journal of Southern Medical University, 2025, 45(2): 409-421. |
[4] | Yadi HE, Xuanru ZHOU, Jinhui JIN, Ting SONG. PE-CycleGAN network based CBCT-sCT generation for nasopharyngeal carsinoma adaptive radiotherapy [J]. Journal of Southern Medical University, 2025, 45(1): 179-186. |
[5] | Weiyang FANG, Hui XIAO, Shuang WANG, Xiaoming LIN, Chaomin CHEN. A deep learning model based on magnetic resonance imaging and clinical feature fusion for predicting preoperative cytokeratin 19 status in hepatocellular carcinoma [J]. Journal of Southern Medical University, 2024, 44(9): 1738-1751. |
[6] | Jiazhi OU, Chang'an ZHAN, Feng YANG. An autoencoder model based on one-dimensional neural network for epileptic EEG anomaly detection [J]. Journal of Southern Medical University, 2024, 44(9): 1796-1804. |
[7] | Chen WANG, Mingqiang MENG, Mingqiang LI, Yongbo WANG, Dong ZENG, Zhaoying BIAN, Jianhua MA. Reconstruction from CT truncated data based on dual-domain transformer coupled feature learning [J]. Journal of Southern Medical University, 2024, 44(5): 950-959. |
[8] | LONG Kaixing, WENG Danyi, GENG Jian, LU Yanmeng, ZHOU Zhitao, CAO Lei. Automatic classification of immune-mediated glomerular diseases based on multi-modal multi-instance learning [J]. Journal of Southern Medical University, 2024, 44(3): 585-593. |
[9] | XIAO Hui, FANG Weiyang, LIN Mingjun, ZHOU Zhenzhong, FEI Hongwen, CHEN Chaomin. A multiscale carotid plaque detection method based on two-stage analysis [J]. Journal of Southern Medical University, 2024, 44(2): 387-396. |
[10] | Caolin LIU, Qingqing ZOU, Menghong WANG, Qinmei YANG, Liwen SONG, Zixiao LU, Qianjin FENG, Yinghua ZHAO. Identification of osteoid and chondroid matrix mineralization in primary bone tumors using a deep learning fusion model based on CT and clinical features: a multi-center retrospective study [J]. Journal of Southern Medical University, 2024, 44(12): 2412-2420. |
[11] | MI Jia, ZHOU Yujia, FENG Qianjin. A 3D/2D registration method based on reconstruction of orthogonal-view Xray images [J]. Journal of Southern Medical University, 2023, 43(9): 1636-1643. |
[12] | CHU Zhiqin, QU Yaoming, ZHONG Tao, LIANG Shujun, WEN Zhibo, ZHANG Yu. A Dual-Aware deep learning framework for identification of glioma isocitrate dehydrogenase genotype using magnetic resonance amide proton transfer modalities [J]. Journal of Southern Medical University, 2023, 43(8): 1379-1387. |
[13] | YU Jiahong, ZHANG Kunpeng, JIN Shuang, SU Zhe, XU Xiaotong, ZHANG Hua. Sinogram interpolation combined with unsupervised image-to-image translation network for CT metal artifact correction [J]. Journal of Southern Medical University, 2023, 43(7): 1214-1223. |
[14] | TENG Lin, WANG Bin, FENG Qianjin. Deep learning-based dose prediction in radiotherapy planning for head and neck cancer [J]. Journal of Southern Medical University, 2023, 43(6): 1010-1016. |
[15] | ZHOU Hao, ZENG Dong, BIAN Zhaoying, MA Jianhua. A semi-supervised network-based tissue-aware contrast enhancement method for CT images [J]. Journal of Southern Medical University, 2023, 43(6): 985-993. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||