Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (1): 43-51.doi: 10.12122/j.issn.1673-4254.2025.01.06
Previous Articles Next Articles
Zhiliang CHEN1(), Yonggang YANG2, Xia HUANG1, Yan CHENG3, Yuan QU4, Qiqi HENG5, Yujia FU5, Kewei LI5, Ning GU1(
)
Received:
2024-03-23
Online:
2025-01-20
Published:
2025-01-20
Contact:
Ning GU
E-mail:czhilt@126.com;guning@njucm.edu.cn
Zhiliang CHEN, Yonggang YANG, Xia HUANG, Yan CHENG, Yuan QU, Qiqi HENG, Yujia FU, Kewei LI, Ning GU. Differential expressions of exosomal miRNAs in patients with chronic heart failure and hyperuricemia: diagnostic values of miR-27a-5p and miR-139-3p[J]. Journal of Southern Medical University, 2025, 45(1): 43-51.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.01.06
Target genes | Primer | Sequences | Annealing temp (℃) | Product size (bp) | Notes |
---|---|---|---|---|---|
hsa-miR-27a-5p | hsa-miR-27a-5p-RT | GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGCTCA | - | 66 | Stem ring primers |
hsa-miR-27a-5p F | CCAGCGTGAGGGCTTAGC | 60 | Forward primers | ||
microRNA_uniRev | CAGTGCAGGGTCCGAGGTAT | Reverse primers | |||
hsa-miR-139-3p | hsa-miR-139-3p-RT | GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACTCCA | - | 67 | Stem ring primers |
hsa-miR-139-3p F | CCAGCGTGTGGAGACGC | 60 | Forward primers | ||
microRNA_uniRev | CAGTGCAGGGTCCGAGGTAT | Reverse primers | |||
hsa-U6 | hsa-U6 snRNA For | CTCGCTTCGGCAGCACATA | 60 | 85 | Forward primers |
hsa-U6 snRNA Rev | CGAATTTGCGTGTCATCCT | Reverse primers |
Tab.1 Primer sequences for qRT-PCR for miR-27a-5p, miR-139-3p and U6
Target genes | Primer | Sequences | Annealing temp (℃) | Product size (bp) | Notes |
---|---|---|---|---|---|
hsa-miR-27a-5p | hsa-miR-27a-5p-RT | GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGCTCA | - | 66 | Stem ring primers |
hsa-miR-27a-5p F | CCAGCGTGAGGGCTTAGC | 60 | Forward primers | ||
microRNA_uniRev | CAGTGCAGGGTCCGAGGTAT | Reverse primers | |||
hsa-miR-139-3p | hsa-miR-139-3p-RT | GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACTCCA | - | 67 | Stem ring primers |
hsa-miR-139-3p F | CCAGCGTGTGGAGACGC | 60 | Forward primers | ||
microRNA_uniRev | CAGTGCAGGGTCCGAGGTAT | Reverse primers | |||
hsa-U6 | hsa-U6 snRNA For | CTCGCTTCGGCAGCACATA | 60 | 85 | Forward primers |
hsa-U6 snRNA Rev | CGAATTTGCGTGTCATCCT | Reverse primers |
Characteristic | Observation group | Control group | P |
---|---|---|---|
Gender (%) | 0.417 | ||
Male | 60 | 70 | |
Female | 40 | 30 | |
Age (year) | 67.03±18.10 | 63.07±13.08 | 0.335 |
SUA (μmol/L) | 528.36±83.48 | 314.74±58.76 | <0.001 |
LVEF (%) | 38.81±9.43 | 65.30±2.28 | <0.001 |
ALT (U/L) | 30.80±23.04 | 25.73±13.66 | 0.305 |
AST (U/L) | 28.20±16.53 | 21.20±9.95 | 0.051 |
SCr (μmol/L) | 96.10±22.06 | 65.80±13.67 | <0.001 |
BUN (mmol/L) | 7.19±1.79 | 5.27±1.30 | <0.001 |
TC (mmol/L) | 4.44±1.20 | 4.94±0.90 | 0.067 |
Tab.2 Baseline characteristics of patients with chronic heart failure (CHF) complicated by hyperuricemia (HUA) and healthy volunteers (Mean±SD, n=30)
Characteristic | Observation group | Control group | P |
---|---|---|---|
Gender (%) | 0.417 | ||
Male | 60 | 70 | |
Female | 40 | 30 | |
Age (year) | 67.03±18.10 | 63.07±13.08 | 0.335 |
SUA (μmol/L) | 528.36±83.48 | 314.74±58.76 | <0.001 |
LVEF (%) | 38.81±9.43 | 65.30±2.28 | <0.001 |
ALT (U/L) | 30.80±23.04 | 25.73±13.66 | 0.305 |
AST (U/L) | 28.20±16.53 | 21.20±9.95 | 0.051 |
SCr (μmol/L) | 96.10±22.06 | 65.80±13.67 | <0.001 |
BUN (mmol/L) | 7.19±1.79 | 5.27±1.30 | <0.001 |
TC (mmol/L) | 4.44±1.20 | 4.94±0.90 | 0.067 |
Fig.1 Volcano plots of the differentially expressed exosomal miRNAs in CHF patients with HUA. Red and green dots represent the genes with significant differential expression, and gray dots represent the genes without substantial differential expression. Upregulated miRNAs are labeled in red, and downregulated ones are marked in green.
Upregulated miRNAs | BaseMean | Log FC | P |
---|---|---|---|
MiR-27a-5p | 4.740923 | 5.8306 | 0.000179 |
MiR-193b-3p | 64.58635 | 2.2848 | 0.000523 |
MiR-210-5p | 4.917714 | 5.8752 | 0.000554 |
MiR-508-5p | 4.249289 | 1.9014 | 0.002869 |
Tab.3 Partial upregulated exosomal miRNAs in CHF patients with HUA versus healthy volunteers
Upregulated miRNAs | BaseMean | Log FC | P |
---|---|---|---|
MiR-27a-5p | 4.740923 | 5.8306 | 0.000179 |
MiR-193b-3p | 64.58635 | 2.2848 | 0.000523 |
MiR-210-5p | 4.917714 | 5.8752 | 0.000554 |
MiR-508-5p | 4.249289 | 1.9014 | 0.002869 |
Downregulated miRNAs | BaseMean | Log FC | P |
---|---|---|---|
MiR-139-3p | 81.70276 | -2.1076 | <0.001 |
MiR-4446-3p | 17.05699 | -3.4115 | <0.001 |
MiR-654-3p | 104.6556 | -2.3092 | <0.001 |
MiR-150-3p | 20.40789 | -2.1551 | <0.01 |
Tab.4 Partial downregulated exosomal miRNAs in CHF patients with HUA versus healthy volunteers
Downregulated miRNAs | BaseMean | Log FC | P |
---|---|---|---|
MiR-139-3p | 81.70276 | -2.1076 | <0.001 |
MiR-4446-3p | 17.05699 | -3.4115 | <0.001 |
MiR-654-3p | 104.6556 | -2.3092 | <0.001 |
MiR-150-3p | 20.40789 | -2.1551 | <0.01 |
miRNAs | Target gene |
---|---|
MiR-27a-5p | ENST00000466134 |
ENST00000474114 | |
ENST00000262319 | |
ENST00000415452 | |
ENST00000395748 | |
ENST00000502307 | |
ENST00000511560 | |
MiR-139-3p | ENST00000649865 |
ENST00000531373 | |
ENST00000650285 | |
ENST00000261405 | |
ENST00000262719 | |
ENST00000358784 | |
ENST00000480614 |
Tab.5 Partial upregulated and downregulated exosomal miRNAs in CHF patients with HUA versus healthy volunteers
miRNAs | Target gene |
---|---|
MiR-27a-5p | ENST00000466134 |
ENST00000474114 | |
ENST00000262319 | |
ENST00000415452 | |
ENST00000395748 | |
ENST00000502307 | |
ENST00000511560 | |
MiR-139-3p | ENST00000649865 |
ENST00000531373 | |
ENST00000650285 | |
ENST00000261405 | |
ENST00000262719 | |
ENST00000358784 | |
ENST00000480614 |
Diagnostic performance | miR-27a-5p | miR-139-3p | Combination detection |
---|---|---|---|
AUC (95% CI) | 0.708 (0.562-0.855) | 0.734 (0.593-0.876) | 0.899 (0.812-0.987) |
P | 0.013 | 0.005 | 0.000 |
Cut-off value | 0.652 | 1.603 | 0.483 |
Sensitivity (%) | 91.7 | 83.3 | 79.2 |
Specificity (%) | 41.7 | 58.3 | 91.7 |
J value | 0.334 | 0.416 | 0.709 |
Tab.6 Diagnostic performance of exosomal miR-27a-5p, exosomal miR-139-3p, and their combination for detection of CHF combined with HUA
Diagnostic performance | miR-27a-5p | miR-139-3p | Combination detection |
---|---|---|---|
AUC (95% CI) | 0.708 (0.562-0.855) | 0.734 (0.593-0.876) | 0.899 (0.812-0.987) |
P | 0.013 | 0.005 | 0.000 |
Cut-off value | 0.652 | 1.603 | 0.483 |
Sensitivity (%) | 91.7 | 83.3 | 79.2 |
Specificity (%) | 41.7 | 58.3 | 91.7 |
J value | 0.334 | 0.416 | 0.709 |
Fig.7 Expression of p-AMPK and p-mTOR proteins in rat myocardial tissue in the 4 groups. **P<0.01 vs Control; ##P<0.01 vs Model; △P<0.05 vs HSJZF, △△P<0.01 vs HSJZF.
1 | Hamaguchi S, Furumoto T, Tsuchihashi-Makaya M, et al. Hyperuricemia predicts adverse outcomes in patients with heart failure[J]. Int J Cardiol, 2011, 151(2): 143-7. |
2 | Krishnan E. Hyperuricemia and incident heart failure[J]. Circ Heart Fail, 2009, 2(6): 556-62. |
3 | Huang H, Huang BT, Li YL, et al. Uric acid and risk of heart failure: a systematic review and meta-analysis[J]. Eur J Heart Fail, 2014, 16(1): 15-24. |
4 | 王晓瑜. 慢性肾脏病非透析患者BNP的影响因素及其与心功能关系的研究[D]. 广州: 广州医科大学, 2020: 33-6. |
5 | Takase H, Dohi Y. Kidney function crucially affects B-type natriuretic peptide (BNP), N-terminal proBNP and their relationship[J]. Eur J Clin Invest, 2014, 44(3): 303-8. |
6 | Vickery S, Price CP, John RI, et al. B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: relationship to renal function and left ventricular hypertrophy[J]. Am J Kidney Dis, 2005, 46(4): 610-20. |
7 | Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American college of cardiology/american heart association joint committee on clinical practice guidelines[J]. Circulation, 2022, 145(18): e895-1032. |
8 | Dong XK, Zhang HL, Wang F, et al. Epidemiology and prevalence of hyperuricemia among men and women in Chinese rural population: the Henan Rural Cohort Study[J]. Mod Rheumatol, 2020, 30(5): 910-20. |
9 | Saheera S, Potnuri AG, Krishnamurthy P. Nano-vesicle (mis)communication in senescence-related pathologies[J]. Cells, 2020, 9(9): 1974. |
10 | Zhang TM, Ma SH, Lv JK, et al. The emerging role of exosomes in Alzheimer's disease[J]. Ageing Res Rev, 2021, 68: 101321. |
11 | Guo M, Hao YN, Feng YW, et al. Microglial exosomes in neurodegenerative disease[J]. Front Mol Neurosci, 2021, 14: 630808. |
12 | Jiang H, Wang JX, Li M, et al. miRTRS: a recommendation algorithm for predicting miRNA targets[J]. IEEE/ACM Trans Comput Biol Bioinform, 2020, 17(3): 1032-41. |
13 | Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview[J]. Methods Mol Biol, 2017, 1509: 1-10. |
14 | Bheri S, Kassouf BP, Park HJ, et al. Engineering cardiac small extracellular vesicle-derived vehicles with thin-film hydration for customized microRNA loading[J]. J Cardiovasc Dev Dis, 2021, 8(11): 135. |
15 | Ameres SL, Zamore PD. Diversifying microRNA sequence and function[J]. Nat Rev Mol Cell Biol, 2013, 14(8): 475-88. |
16 | Chen H, Xue RC, Huang PS, et al. Modified exosomes: a good transporter for miRNAs within stem cells to treat ischemic heart disease[J]. J Cardiovasc Transl Res, 2022, 15(3): 514-23. |
17 | Wang L, Liu J, Xu B, et al. Reduced exosome miR-425 and miR-744 in the plasma represents the progression of fibrosis and heart failure[J]. Kaohsiung J Med Sci, 2018, 34(11): 626-33. |
18 | Gou HM, Wan PC, Guo WQ, et al. Analysis of miRNA expression profile of hyperuricemia in peripheral blood and the construction of ceRNA network [J]. J Nor Sichuan Med Coll, 2023, 38(04): 451-6. |
19 | 高 娜. 应用超声生物显微镜评价肥胖小鼠心肌功能与其外泌体成分的实验研究[D]. 银川: 宁夏医科大学, 2022: 25-7. |
20 | Ning Y, Huang PS, Chen GH, et al. Atorvastatin-pretreated mesenchymal stem cell-derived extracellular vesicles promote cardiac repair after myocardial infarction via shifting macrophage polarization by targeting microRNA-139-3p/Stat1 pathway[J]. BMC Med, 2023, 21(1): 96. |
21 | Zhang Q, Chen L, Huang LY, et al. CD44 promotes angiogenesis in myocardial infarction through regulating plasma exosome uptake and further enhancing FGFR2 signaling transduction[J]. Mol Med, 2022, 28(1): 145. |
22 | Wang XJ, Morelli MB, Matarese A, et al. Cardiomyocyte-derived exosomal microRNA-92a mediates post-ischemic myofibroblast activation both in vitro and ex vivo [J]. ESC Heart Fail, 2020, 7(1): 284-8. |
23 | Morelli MB, Shu J, Sardu C, et al. Cardiosomal microRNAs are essential in post-infarction myofibroblast phenoconversion[J]. Int J Mol Sci, 2019, 21(1): 201. |
24 | Kansakar U, Varzideh F, Mone P, et al. Functional role of microRNAs in regulating cardiomyocyte death[J]. Cells, 2022, 11(6): 983. |
25 | Zhang DQ, Zheng N, Fu XL, et al. Dl-3-n-butylphthalide attenuates myocardial ischemia reperfusion injury by suppressing oxidative stress and regulating cardiac mitophagy via the PINK1/Parkin pathway in rats[J]. J Thorac Dis, 2022, 14(5): 1651-62. |
26 | Li B, Chi RF, Qin FZ, et al. Distinct changes of myocyte autophagy during myocardial hypertrophy and heart failure: association with oxidative stress[J]. Exp Physiol, 2016, 101(8): 1050-63. |
27 | Wang JL, Li YZ, Tao TQ, et al. Postconditioning with calreticulin attenuates myocardial ischemia/reperfusion injury and improves autophagic flux[J]. Shock, 2020, 53(3): 363-72. |
28 | Chen YC, Zhang CL, Wu Q. The role of autophagy in vascular endothelial cell damage and inflammatory response caused by high uric acid [J]. Chin J Gerontol, 2019, 39(24): 6098-101. |
29 | Du LG, Yu Y, Lan QS, et al. Lesinurad improves high uric acid-induced abnormal proliferation of vascular smooth muscle by inhibiting autophagy via gegulating AMPK/mTOR pathway [J]. J Guangzhou Med Univ, 2022, 50(5): 1-5. |
30 | Liu D, Gao K, Xie Y, et al. The effect of high uric acid on the activity of cardiomyocytes and its related mechanism [J]. Tianjin Med J, 2020, 48(10): 931-6. |
31 | Li TY, Lin SY, Lin SC. Mechanism and physiological significance of growth factor-related autophagy[J]. Physiology, 2013, 28(6): 423-31. |
32 | Han DD, Jiang LL, Gu XL, et al. SIRT3 deficiency is resistant to autophagy-dependent ferroptosis by inhibiting the AMPK/mTOR pathway and promoting GPX4 levels[J]. J Cell Physiol, 2020, 235(11): 8839-51. |
33 | Li WM, Zhu JQ, Dou J, et al. Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy[J]. Nat Commun, 2017, 8(1): 1763. |
34 | Lou DX, Zhang XG, Jiang CH, et al. 3β, 23-dihydroxy-12-ene-28-ursolic acid isolated from Cyclocarya paliurus alleviates NLRP3 inflammasome-mediated gout via PI3K-AKT-mTOR-dependent autophagy[J]. Evid Based Complement Alternat Med, 2022, 2022: 5541232. |
35 | Ba LN, Gao JQ, Chen YP, et al. Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways[J]. Phytomedicine, 2019, 58: 152765. |
36 | Fan CL, Cai WJ, Ye MN, et al. Qili Qiangxin, a compound herbal medicine formula, alleviates hypoxia-reoxygenation-induced apoptotic and autophagic cell death via suppression of ROS/AMPK/mTOR pathway in vitro [J]. J Integr Med, 2022, 20(4): 365-75. |
[1] | Junping ZHAN, Shuo HUANG, Qingliang MENG, Wei FAN, Huimin GU, Jiakang CUI, Huilian WANG. Buyang Huanwu Decoction reduces mitochondrial autophagy in rheumatoid arthritis synovial fibroblasts in hypoxic culture by inhibiting the BNIP3-PI3K/Akt pathway [J]. Journal of Southern Medical University, 2025, 45(1): 35-42. |
[2] | Kelei GUO, Yingli LI, Chenguang XUAN, Zijun HOU, Songshan YE, Linyun LI, Liping CHEN, Li HAN, Hua BIAN. Yiqi Yangyin Huazhuo Tongluo Formula alleviates diabetic podocyte injury by regulating miR-21a-5p/FoxO1/PINK1-mediated mitochondrial autophagy [J]. Journal of Southern Medical University, 2025, 45(1): 27-34. |
[3] | Siqi HE, Nan WEN, Xun CHEN, Yue WANG, Tin ZHANG, Yandong MU. Lycium barbarum glycopeptide reduces bone loss caused by exosomes derived from human gingival fibroblasts with radiation exposure [J]. Journal of Southern Medical University, 2024, 44(9): 1752-1759. |
[4] | Rong DAI, Zeping CAO, Chuanjiao LIU, Yong GE, Meng CHENG, Weili WANG, Yizhen CHEN, Lei ZHANG, Yiping WANG. Qingshen Granules alleviates renal fibrosis in mice by regulating exosomes, miR-330-3p, and CREBBP expression [J]. Journal of Southern Medical University, 2024, 44(8): 1431-1440. |
[5] | Guangya CHEN, Xingliang XIANG, Zhaoxiang ZENG, Rongzeng HUANG, Shuna JIN, Mingzhong XIAO, Chengwu SONG. Regulatory effect of Diwu Yanggan Decoction on lysoglycerophospholipids in circulating exosomes in a mouse model of nonalcoholic fatty liver disease [J]. Journal of Southern Medical University, 2024, 44(7): 1382-1388. |
[6] | Qianyi CHEN, Shuhan SHANG, Huan LU, Sisi LI, Zhimian SUN, Xirui FAN, Zhilin QI. Calenduloside E inhibits hepatocellular carcinoma cell proliferation and migration by down-regulating GPX4 and SLC7A11 expression through the autophagy pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1327-1335. |
[7] | Yeming ZHANG, Yuanxiang ZHANG, Xuebin SHEN, Guodong WANG, Lei ZHU. MiRNA-103-3p promotes neural cell autophagy by activating Wnt/β-catenin signaling via targeting rab10 in a rat model of depression [J]. Journal of Southern Medical University, 2024, 44(7): 1315-1326. |
[8] | Yao CHENG, Yuanying WANG, Feiyang YAO, Pan HU, Mingxian CHEN, Ning WU. Baicalin suppresses type 2 dengue virus-induced autophagy of human umbilical vein endothelial cells by inhibiting the PI3K/AKT pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1272-1283. |
[9] | Guoxin LIANG, Hongyue TANG, Chang GUO, Mingming ZHANG. MiR-224-5p overexpression inhibits oxidative stress by regulating the PI3K/Akt/FoxO1 axis to attenuate hypoxia/reoxygenation-induced cardiomyocyte injury [J]. Journal of Southern Medical University, 2024, 44(6): 1173-1181. |
[10] | Caiyu SHEN, Shuai WANG, Ruiying ZHOU, Yuhe WANG, Qin GAO, Xingzhi CHEN, Shu YANG. Prediction of risk of in-hospital death in patients with chronic heart failure complicated by lung infections using interpretable machine learning [J]. Journal of Southern Medical University, 2024, 44(6): 1141-1148. |
[11] | Tong YUAN, Yuying GUO, Junling ZHANG, Saijun FAN. Normal mouse serum alleviates radiation pneumonitis in mice by inhibiting the focal adhesion signaling pathway [J]. Journal of Southern Medical University, 2024, 44(5): 801-809. |
[12] | ZHOU Fengmin, GUO Yanju, CHEN Ning. Exercise promotes irisin expression to ameliorate renal injury in type 2 diabetic rats [J]. Journal of Southern Medical University, 2024, 44(4): 675-681. |
[13] | CHEN Junjie, HUANG Chuanbing, LI Ming. Jianpi Zishen granule inhibits podocyte autophagy in systemic lupus erythematosus: a network pharmacology and clinical study [J]. Journal of Southern Medical University, 2024, 44(3): 465-473. |
[14] | XIAO Hongmin, HAN Baosong, GUO Jiacheng, WU Chao, WU Jingyi. HTD4010 attenuates myocardial injury in mice with septic cardiomyopathy by promoting autophagy via the AMPK/mTOR signaling pathway [J]. Journal of Southern Medical University, 2024, 44(3): 507-514. |
[15] | Yunfei LI, Lijun PANG, Longwu SHU, Ming LI, Chuanbing HUANG. Qihuang Jianpi Zishen Granules improves thrombocytopenia in mice with systemic lupus erythematosus by suppressing platelet autophagy via the Ca2+/CaMKK2/AMPK/mTOR signaling pathway [J]. Journal of Southern Medical University, 2024, 44(12): 2327-2334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||