Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (12): 2327-2334.doi: 10.12122/j.issn.1673-4254.2024.12.08
Yunfei LI(), Lijun PANG, Longwu SHU, Ming LI, Chuanbing HUANG(
)
Received:
2024-08-04
Online:
2024-12-20
Published:
2024-12-26
Contact:
Chuanbing HUANG
E-mail:1427847657@qq.com;chuanbinh@163.com
Supported by:
Yunfei LI, Lijun PANG, Longwu SHU, Ming LI, Chuanbing HUANG. Qihuang Jianpi Zishen Granules improves thrombocytopenia in mice with systemic lupus erythematosus by suppressing platelet autophagy via the Ca2+/CaMKK2/AMPK/mTOR signaling pathway[J]. Journal of Southern Medical University, 2024, 44(12): 2327-2334.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.12.08
Gene | Amplicon size (bp) | Forward primer (5'→3') | Reverse primer (5'→3') |
---|---|---|---|
β-actin | 120 | AGTGTGACGTTGACATCCGT | TGCTAGGAGCCAGAGCAGTA |
CaMKK2 | 103 | GAAATTGGAAAGGGCTCCTA | GTCGGATCAGCTTCTTTTTG |
AMPK2α | 92 | AGTGAAGACTACCAGGTGAT | TTGCAGATGTAGTCGAACAA |
mTOR | 156 | ATTGACTTTGGGGACTGCTT | GAGCACTTCCATCACGGT |
Beclin1 | 119 | GCTGGAAGATGTGGAAAAGA | CTCACTATACTCCCGCTGGTAC |
p62 | 88 | AGGGCCTGCACAGGGAACAC | CGAAGCCAGCGGCTATGAGA |
Tab.1 Primer sequences for RT-qPCR
Gene | Amplicon size (bp) | Forward primer (5'→3') | Reverse primer (5'→3') |
---|---|---|---|
β-actin | 120 | AGTGTGACGTTGACATCCGT | TGCTAGGAGCCAGAGCAGTA |
CaMKK2 | 103 | GAAATTGGAAAGGGCTCCTA | GTCGGATCAGCTTCTTTTTG |
AMPK2α | 92 | AGTGAAGACTACCAGGTGAT | TTGCAGATGTAGTCGAACAA |
mTOR | 156 | ATTGACTTTGGGGACTGCTT | GAGCACTTCCATCACGGT |
Beclin1 | 119 | GCTGGAAGATGTGGAAAAGA | CTCACTATACTCCCGCTGGTAC |
p62 | 88 | AGGGCCTGCACAGGGAACAC | CGAAGCCAGCGGCTATGAGA |
Group | PLT (×109/L) | PCT (%) | PDW (%) | MPV (fl) |
---|---|---|---|---|
Control | 924.50±82.64 | 0.80±0.08 | 10.56±0.72 | 32.44±2.36 |
Model | 348.00±72.63** | 0.32±0.08** | 14.47±1.11** | 58.72±3.81** |
QJZG | 559.50±40.62## | 0.38±0.10 | 12.42±0.90## | 44.43±2.20## |
Pred | 536.00±35.05## | 0.33±0.03 | 14.28±0.68 | 53.42±1.65# |
CaMKK2 | 154.70±12.82## | 0.07±0.02## | 17.77±0.97## | 77.72±3.39## |
Tab.2 Comparison of PLT, PCT, PDW and MPV levels in peripheral blood of the mice among the 5 groups (Mean±SD)
Group | PLT (×109/L) | PCT (%) | PDW (%) | MPV (fl) |
---|---|---|---|---|
Control | 924.50±82.64 | 0.80±0.08 | 10.56±0.72 | 32.44±2.36 |
Model | 348.00±72.63** | 0.32±0.08** | 14.47±1.11** | 58.72±3.81** |
QJZG | 559.50±40.62## | 0.38±0.10 | 12.42±0.90## | 44.43±2.20## |
Pred | 536.00±35.05## | 0.33±0.03 | 14.28±0.68 | 53.42±1.65# |
CaMKK2 | 154.70±12.82## | 0.07±0.02## | 17.77±0.97## | 77.72±3.39## |
Group | TPO (ng/mL) | IL-6 (pg/mL) | IL-10 (pg/mL) | TNF-α (pg/mL) | IFN-γ (pg/mL) |
---|---|---|---|---|---|
Control | 103.22±8.29 | 131.08±3.08 | 210.13±3.26 | 517.24±22.86 | 70.88±6.56 |
Model | 290.31±28.49** | 292.31±5.93** | 89.01±10.03** | 953.83±28.68** | 217.11±13.05** |
QJZG | 164.72±6.79## | 166.81±3.82## | 122.02±3.89## | 715.61±10.02## | 121.76±10.39## |
Pred | 177.27±3.16## | 183.88±2.44## | 101.61±2.42## | 799.03±25.77## | 134.02±8.75## |
CaMKK2 | 310.50±17.73 | 312.01±18.01## | 44.12±4.39## | 1643.13±17.71## | 301.13±9.09## |
Tab.3 Comparison of TPO, IL-6, IL-10, TNF-α, and IFN-γ levels in peripheral blood among the 5 group (Mean±SD)
Group | TPO (ng/mL) | IL-6 (pg/mL) | IL-10 (pg/mL) | TNF-α (pg/mL) | IFN-γ (pg/mL) |
---|---|---|---|---|---|
Control | 103.22±8.29 | 131.08±3.08 | 210.13±3.26 | 517.24±22.86 | 70.88±6.56 |
Model | 290.31±28.49** | 292.31±5.93** | 89.01±10.03** | 953.83±28.68** | 217.11±13.05** |
QJZG | 164.72±6.79## | 166.81±3.82## | 122.02±3.89## | 715.61±10.02## | 121.76±10.39## |
Pred | 177.27±3.16## | 183.88±2.44## | 101.61±2.42## | 799.03±25.77## | 134.02±8.75## |
CaMKK2 | 310.50±17.73 | 312.01±18.01## | 44.12±4.39## | 1643.13±17.71## | 301.13±9.09## |
1 | Pamuk ON, Ali SM, Hasni S. Development of systemic lupus erythematosus in patients with immune thrombocytopenic purpura: a systematic meta-analysis[J]. Autoimmun Rev, 2023, 22(4): 103297. |
2 | Jiang Y, Cheng YJ, Ma SL, et al. Systemic lupus erythematosus-complicating immune thrombocytopenia: from pathogenesis to treatment[J]. J Autoimmun, 2022, 132: 102887. |
3 | Yu TS, Wang HY, Zhao YJ, et al. Abnormalities of bone marrow B cells and plasma cells in primary immune thrombocytopenia[J]. Blood Adv, 2021, 5(20): 4087-101. |
4 | Shang SS, Li M, Jiang H, et al. The protective effects of qihuang Jianpi zishen decoction on mrl/lpr mice and its mechanism[J]. Pak J Pharm Sci, 2022, 35(6): 1627-35. |
5 | 钱 爱, 程园园, 朱雅文, 等. 芪黄健脾滋肾颗粒治疗系统性红斑狼疮的疗效观察[J]. 安徽中医药大学学报, 2023, 42(6): 7-12. |
6 | 李 明, 尚双双, 李云飞, 等. 芪黄健脾滋肾颗粒治疗脾肾亏虚型系统性红斑狼疮的临床疗效观察[J]. 时珍国医国药, 2023, 34(2): 370-3. |
7 | Artım-Esen B, Çene E, Şahinkaya Y, et al. Autoimmune haemolytic anaemia and thrombocytopaenia in a single-centre cohort of patients with systemic lupus erythematosus from Turkey: clinical associations and effect on disease damage and survival[J]. Lupus, 2019, 28(12): 1480-7. |
8 | Halfon M, Tankeu AT, Ribi C. Mitochondrial dysfunction in systemic lupus erythematosus with a focus on lupus nephritis[J]. Int J Mol Sci, 2024, 25(11): 6162. |
9 | Kamal AM, Nabih NA, Rakha NM, et al. Upregulation of necroptosis markers RIPK3/MLKL and their crosstalk with autophagy-related protein Beclin-1 in primary immune thrombocytopenia[J]. Clin Exp Med, 2023, 23(2): 447-56. |
10 | Jing ZL, He XY, Jia ZR, et al. NCAPD2 inhibits autophagy by regulating Ca(2+)/CAMKK2/AMPK/mTORC1 pathway and PARP-1/SIRT1 axis to promote colorectal cancer[J]. Cancer Lett, 2021, 520: 26-37. |
11 | Yuan JX, Liu HH, Zhang H, et al. Controlled activation of TRPV1 channels on microglia to boost their autophagy for clearance of alpha-synuclein and enhance therapy of Parkinson's disease[J]. Adv Mater, 2022, 34(11): e2108435. |
12 | Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human[J]. J Basic Clin Pharm, 2016, 7(2): 27-31. |
13 | 李若柠, 郭展立, 王 媛, 等. 血小板内皮聚集受体 1 及其介导的信号通路在血小板和内皮细胞中的作用研究进展[J]. 中国临床药理学与治疗学, 2023, 28(4):438-45. |
14 | Dalmia S, Harnett B, Al-Samkari H, et al. Novel treatments for immune thrombocytopenia: targeting platelet autoantibodies[J]. Expert Rev Hematol, 2024, 17(9): 609-16. |
15 | Yang HX, Li YJ, He YL, et al. Hydrogen sulfide promotes platelet autophagy via PDGFR‑α/PI3K/akt signaling in cirrhotic thrombocytopenia[J]. J Clin Transl Hepatol, 2024, 12(7): 625-33. |
16 | 罗雅琴, 于新阳, 张月明, 等. 基于AMPK/mTOR/ULK1信号通路介导的自噬探讨芪黄益气摄血方治疗免疫性血小板减少症模型小鼠的作用机制[J]. 中国实验方剂学杂志, 2022, 28(17): 43-51. |
17 | Shi WW, Xu DC, Gu JH, et al. Saikosaponin-d inhibits proliferation by up-regulating autophagy via the CaMKKβ‑AMPK-mTOR pathway in ADPKD cells[J]. Mol Cell Biochem, 2018, 449(1): 219-26. |
18 | Ablat N, Ablimit M, Abudoukadier A, et al. Investigating the hemostatic effect of medicinal plant Arnebia euchroma (Royle) I.M.Johnst extract in a mouse model[J]. J Ethnopharmacol, 2021, 278: 114306. |
19 | Ligi D, Della FC, Notarte KI, et al. Platelet distribution width (PDW) as a significant correlate of COVID-19 infection severity and mortality[J]. Clin Chem Lab Med, 2023, 62(3):385-95. |
20 | Zheng YY, Wang L, Shi Q. Mean platelet volume (MPV) and platelet distribution width (PDW) predict clinical outcome of acute ischemic stroke: a systematic review and meta-analysis[J]. J Clin Neurosci, 2022, 101: 221-7. |
21 | 刘文辉, 于 洋, 李俊红. 利妥昔单抗联合地塞米松治疗系统性红斑狼疮继发血小板减少患者的效果[J]. 中国民康医学, 2024, 36(11): 40-2. |
22 | Shang QH, Yu XY, Sun Q, et al. Polysaccharides regulate Th1/Th2 balance: a new strategy for tumor immunotherapy[J]. Biomedecine Pharmacother, 2024, 170: 115976. |
23 | Talaat RM, Mohamed SF, Bassyouni IH, et al. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity[J]. Cytokine, 2015, 72(2): 146-53. |
24 | Dong KZ, Wang Y, Yao Y, et al. The reduced frequency of CD39+CD73+ B cell subsets in SLE patients is correlated with disease activity[J]. Int Immunopharmacol, 2024, 140: 112743. |
25 | Nakajima R, Saita Y, Kobayashi Y, et al. Comparison of bioactive substances in novel-developed freeze-dried platelet-rich plasma (PRP) and activated normal PRP, and investigation of bioactive substance levels after long-term storage[J]. Regen Ther, 2024, 27: 200-6. |
26 | Chen Y, Tao T, Liang Z, et al. Prednisone combined with Dihydroartemisinin attenuates systemic lupus erythematosus by regulating M1/M2 balance through the MAPK signaling pathway[J]. Mol Immunol, 2024, 170:144-55. |
27 | Baroni Pietto MC, Glembotsky AC, Lev PR, et al. Toll-like receptor expression and functional behavior in platelets from patients with systemic lupus erythematosus[J]. Immunobiology, 2024, 229(1): 152782. |
28 | Li Y, Hou C, Yan W, et al. The relationship between different interleukins and T helper cells count in patients with immune thrombocytopenia[J]. Cell Mol Biol, 2022, 67(5):421-6. |
29 | Schwertz H, Middleton EA. Autophagy and its consequences for platelet biology[J]. Thromb Res, 2023, 231: 170-81. |
30 | You T, Wang Q, Zhu L. Role of autophagy in megakaryocyte differentiation and platelet formation[J]. Int J Physiol Pathophysiol Pharmacol, 2016, 8(1): 28-34. |
31 | Gu J, Dai SY, Liu YM, et al. Activation of Ca2+-sensing receptor as a protective pathway to reduce Cadmium-induced cytotoxicity in renal proximal tubular cells[J]. Sci Rep, 2018, 8(1): 1092. |
32 | Nakanishi A, Hatano N, Fujiwara Y, et al. AMP-activated protein kinase-mediated feedback phosphorylation controls the Ca(2+)/calmodulin (CaM) dependence of Ca(2+)/CaM-dependent protein kinase kinase Β[J]. J Biol Chem, 2017, 292(48): 19804-13. |
33 | Chen M, Zhu JY, Mu WJ, et al. Cdo1-Camkk2-AMPK axis confers the protective effects of exercise against NAFLD in mice[J]. Nat Commun, 2023, 14(1): 8391. |
34 | Zhang Q, Jin WQ, Wang H, et al. Inhibition of endoplasmic reticulum stress and excessive autophagy by Jiedu Tongluo Tiaogan Formula via a CaMKKβ/AMPK pathway contributes to protect pancreatic β-cells[J]. J Ethnopharmacol, 2024, 333: 118440. |
35 | Deng JT, Yang QS, Zhu WY, et al. Neuregulin 4 attenuates podocyte injury and proteinuria in part by activating AMPK/mTOR-mediated autophagy in mice[J]. J Cell Biochem, 2024, 125(10): e30634. |
36 | Biao YN, Li DT, Zhang YX, et al. Wulingsan alleviates MAFLD by activating autophagy via regulating the AMPK/mTOR/ULK1 signaling pathway[J]. Can J Gastroenterol Hepatol, 2024, 2024: 9777866. |
37 | Li HC, Gao YF, Li MD, et al. Cai's herbal tea enhances mitochondrial autophagy of type 1 diabetic mellitus β cells through the AMPK/mTOR pathway and alleviates inflammatory response[J]. Acta Diabetol, 2024: 1350-8. |
38 | Liang B, Chen X, Li M, et al. Liuwei Dihuang pills attenuate ovariectomy-induced bone loss by alleviating bone marrow mesenchymal stem cell (BMSC) senescence via the Yes-associated protein (YAP)-autophagy axis[J]. Pharm Biol, 2024, 62(1): 42-52. |
39 | Yan TT, Chen JY, Wang YL, et al. Deficiency of aldehyde dehydrogenase 2 aggravates ethanol-induced cytotoxicity in N2a cells via CaMKII/Drp1-mediated mitophagy[J]. Food Chem Toxicol, 2023, 182: 114129. |
40 | Liang FF, Zhang KN, Ma WZ, et al. Impaired autophagy and mitochondrial dynamics are involved in Sorafenib-induced cardiomyocyte apoptosis[J]. Toxicology, 2022, 481: 153348. |
41 | Cui T, Wang XR, Hu JY, et al. Molybdenum and cadmium co-exposure induces CaMKKβ/AMPK/mTOR pathway mediated-autophagy by subcellular calcium redistribution in duck renal tubular epithelial cells[J]. J Inorg Biochem, 2022, 236: 111974. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||