Journal of Southern Medical University ›› 2026, Vol. 46 ›› Issue (1): 113-121.doi: 10.12122/j.issn.1673-4254.2026.01.12
Yanyu LI(
), Cheng DAI Chuanjun LI(
), Runzhi GUO, Haoyu HAN, Linming LU, Fangfang ZHOU, Hui ZHI
Received:2025-06-04
Online:2026-01-20
Published:2026-01-16
Supported by:Yanyu LI, Cheng DAI Chuanjun LI, Runzhi GUO, Haoyu HAN, Linming LU, Fangfang ZHOU, Hui ZHI. Antitumor component-Ι in Agkistrodon halys venom inhibits proliferation and migration of cisplatin-resistant gastric cancer cells by downregulating RAI14[J]. Journal of Southern Medical University, 2026, 46(1): 113-121.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2026.01.12
| Group | AHVAC-I (μg/mL) | |||||
|---|---|---|---|---|---|---|
| 1 | 2 | 4 | 8 | 16 | 32 | |
| Cell viability | 104.37±2.68 | 100.8±5.45 | 85.65±4.67 | 85.65±4.67 | 46.23±4.74 | 3.01±1.87 |
| t | 3.09 | 0.28 | 5.82 | 8.26 | 23.07 | 89.64 |
| P | >0.05 | >0.05 | <0.05 | <0.01 | <0.001 | <0.0001 |
Tab.1 Toxic effects of AHVAC-I on MKN-28/DDP cells (Mean±SD, %)
| Group | AHVAC-I (μg/mL) | |||||
|---|---|---|---|---|---|---|
| 1 | 2 | 4 | 8 | 16 | 32 | |
| Cell viability | 104.37±2.68 | 100.8±5.45 | 85.65±4.67 | 85.65±4.67 | 46.23±4.74 | 3.01±1.87 |
| t | 3.09 | 0.28 | 5.82 | 8.26 | 23.07 | 89.64 |
| P | >0.05 | >0.05 | <0.05 | <0.01 | <0.001 | <0.0001 |
Fig.1 Cytotoxicity of AHVAC-I in MKN-28/DDP cells after treatment for 72 h. A: Cells viability assessed by CCK8 assay. B: Colony formation assay of MKN-28/DDP cells at 3 weeks after AHVAC-I treatment. C: Quantitative analysis of colonys in each group. Con: Blank control. n=5, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs Control.
Fig.2 Inhibitory effects of AHVAC-I on migration and invasion of MKN-28/DDP cells. A: Wounding-healing assay for assessing migration ability of MKN-28/DDP cells (Original magnification:×40). B: Quantitative analysis of migration ability of MKN-28/DDP cells in each group. C: Transwell assay for assessing invasion ability of MKN-28/DDP cells (×100). D: Quantitative analysis of invading cells in each group, n=5, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs Control.
Fig.3 AHVAC-I inhibits epithelial-mesenchymal transition (EMT) of MKN-28/DDP cells. A: Immunoblots of E-cad, N-cad, vimentin and snail in MKN-28/DDP cells treated with different concentrations of AHVAC-I. B-E: Protein expression levels of E-cad, N-cad, vimentin and snail, n=3, **P<0.01, ***P<0.001, ****P<0.0001 vs Control.
Fig.4 AHVAC-I down-regulates RAI14 expression in MKN-28/DDP cells. A: qRT-PCR for detecting RAI14 mRNA expression in MKN-28 cells and MKN-28/DDP cells (n=6, **P<0.01 vs MKN-28 cells). B: qRT-PCR of RAI14 expression in MKN-28/DDP cells treated with different concentrations of AHVAC-I (n=6, **P<0.01, ***P<0.001 vs blank Control). C: Immunoblots of RAI14, AKT and AKT-p in MKN-28/DDP cells treated with different concentrations of AHVAC-I. D: Protein expression levels of RAI14 in different groups (n=3). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs Control.
Fig.5 RAI14 supplementation promotes proliferation of AHVAC-I-treated MKN-20/DDP (MKN-20/DDPAHVAC-I) cells. A: Immunoblots of AKT and AKT-p in MKN-20/DDPAHVAC-I cells treated with RAI14 (n=3). B, C: Colony-forming assay showing restored proliferation ability of MKN-20/DDPAHVAC-I cells after RAI14 treatment (n=5). **P<0.01 vs AHVAC-1.
Fig.6 RAI14 supplementation promotes migration and invasion ability of MKN-20/DDPAHVAC-I cells. A: Migration ability of MKN-28/DDP cells analyzed by wounding-healing assay (×40). B: Quantitative analysis of migration ability of MKN-28/DDP cells. C: Invasion ability of MKN-28/DDP cells was analyzed by Transwell assay (×100). D: Quantitative analysis of number of invaded cells.n=5, *P<0.05, **P<0.01, ***P<0.001 vs AHVAC-I.
| [1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. doi:10.3322/caac.21834 |
| [2] | Van Cutsem E, Sagaert X, Topal B, et al. Gastric cancer[J]. Lancet, 2016, 388(10060): 2654-2664. doi:10.1016/s0140-6736(16)30354-3 |
| [3] | Cheng J, Cai M, Shuai XM, et al. First-line systemic therapy for advanced gastric cancer: a systematic review and network meta-analysis[J]. Ther Adv Med Oncol, 2019, 11: 1758835919877726. doi:10.1177/1758835919877726 |
| [4] | Lordick F, Lorenzen S, Yamada Y, et al. Optimal chemotherapy for advanced gastric cancer: is there a global consensus?[J]. Gastric Cancer, 2014, 17(2): 213-25. doi:10.1007/s10120-013-0297-z |
| [5] | Kulus M, Farzaneh M, Bryja A, et al. Phenotypic transitions the processes involved in regulation of growth and proangiogenic properties of stem cells, cancer stem cells and circulating tumor cells[J]. Stem Cell Rev Rep, 2024, 20(4): 967-79. doi:10.1007/s12015-024-10691-w |
| [6] | Wang J, Ma YZ, Guo M, et al. Salvianolic acid B suppresses EMT and apoptosis to lessen drug resistance through AKT/mTOR in gastric cancer cells[J]. Cytotechnology, 2021, 73(1): 49-61. doi:10.1007/s10616-020-00441-4 |
| [7] | Gu M, Zheng W, Zhang M, et al. Downregulation of RAI14 inhibits the proliferation and invasion of breast cancer cells[J]. J Cancer. 2019, 10(25): 6341- 8. doi:10.7150/jca.34910 |
| [8] | Zhang R, Hu M, Chen HN, et al. Phenotypic heterogeneity analysis of APC-mutant colon cancer by proteomics and phosphoproteomics identifies RAI14 as a key prognostic determinant in east asians and westerners[J]. Mol Cell Proteomics, 2023, 22(5): 100532. doi:10.1016/j.mcpro.2023.100532 |
| [9] | Gold BS, Dart RC, Barish RA. Bites of venomous snakes[J]. N Engl J Med, 2002, 347(5): 347-56. doi:10.1056/nejmra013477 |
| [10] | Sasovsky DJ, Angelina E, Leiva LC, et al. Comparative in vitro and in silico analysis of the ability of basic Asp49 phospholipase A2 and Lys49-phospholipase A2-like myotoxins from Bothrops diporus venom to inhibit the metastatic potential of murine mammary tumor cells and endothelial cell tubulogenesis: Asp49 vs Lys49 phospholipases A2: Inhibition of metastasis and angiogenesis[J]. Chem Biol Interact, 2024, 402: 111217. |
| [11] | Giordano G, Pancione M. MHC class III lymphocyte antigens 6 as endogenous immunotoxins: Unlocking immunotherapy in proficient mismatch repair colorectal cancer[J]. WIREs Mech Dis, 2024, 16(1): e1631. doi:10.1002/wsbm.1631 |
| [12] | Vyas VK, Brahmbhatt K, Bhatt H, et al. Therapeutic potential of snake venom in cancer therapy: current perspectives[J]. Asian Pac J Trop Biomed, 2013, 3(2): 156-62. doi:10.1016/s2221-1691(13)60042-8 |
| [13] | 王晓庆, 支 慧, 胡浩然, 等. 皖南蝮蛇抑瘤组分Ⅰ急性毒理研究[J]. 牡丹江医学院学报, 2022, 43(3): 44-8. |
| [14] | 黄小梅, 支 慧, 陈 浩, 等. 皖南蝮蛇毒抑瘤组分-Ⅰ对胃癌MKN-28细胞增殖、迁移及凋亡的影响[J]. 中国临床药理学与治疗学, 2024, 29(3): 270-6. |
| [15] | Zhang C, Li D, Yu R, et al. Immune landscape of gastric carcinoma tumor microenvironment identifies a peritoneal relapse relevant immune signature[J]. Front Immunol, 2021, 12: 651033. doi:10.3389/fimmu.2021.651033 |
| [16] | Kang YK, Chin K, Chung HC, et al. S-1 plus leucovorin and oxaliplatin versus S-1 plus cisplatin as first-line therapy in patients with advanced gastric cancer (SOLAR): a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2020, 21(8): 1045-56. doi:10.1016/s1470-2045(20)30315-6 |
| [17] | 皇甫娟, 张 强, 魏祯瑶, 等. 基于p53介导自噬通路探讨臭椿酮对顺铂耐药胃癌细胞株耐药性的影响[J]. 现代药物与临床, 2021, 36(6): 1112-8. |
| [18] | Hong YS, Ham YA, Choi JH, et al. Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines[J]. Exp Mol Med, 2000, 32(3): 127-34. doi:10.1038/emm.2000.22 |
| [19] | 鲁 珏, 徐飞鹏. 白眉蝮蛇蛇毒细胞毒素对胃癌细胞的杀伤作用及对细胞超微结构的影响[J]. 细胞与分子免疫学杂志, 2009, 25(4): 335-7. |
| [20] | 鲁 珏, 徐飞鹏. 白眉蝮蛇蛇毒细胞毒素H1对实验性大鼠胃癌抑制作用的实验研究[J]. 第四军医大学学报, 2009(11): 975-7. |
| [21] | 韦 敏, 宋 慧, 班建东, 等. 神经生长因子的提取及其对MGC-803细胞的凋亡作用[J]. 广西医科大学学报, 2008, 25(4): 526-9. |
| [22] | Ebrahimi N, Manavi MS, Faghihkhorasani F, et al. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response[J]. Cancer Metastasis Rev, 2024, 43(1): 457-79. doi:10.1007/s10555-023-10162-7 |
| [23] | Kutty RK, Kutty G, Samuel W, et al. Molecular characterization and developmental expression of NORPEG a novel gene induced by retinoic acid[J]. J Biol Chem, 2001, 276(4): 2831-40. doi:10.1074/jbc.m007421200 |
| [24] | Xiao Y, Zhang H, Du G, et al. RAI14 Is a Prognostic Biomarker and Correlated With Immune Cell Infiltrates in Gastric Cancer[J]. Technol Cancer Res Treat. 2020, 19: 1533033820970684. doi:10.1177/1533033820970684 |
| [25] | Hawkins SM, Loomans HA, Wan YW, et al. Expression and functional pathway analysis of nuclear receptor NR2F2 in ovarian cancer[J]. J Clin Endocrinol Metab, 2013, 98(7): E1152-62. doi:10.1210/jc.2013-1081 |
| [26] | Paez AV, Pallavicini C, Schuster F, et al. Heme oxygenase-1 in the forefront of a multi-molecular network that governs cell-cell contacts and filopodia-induced zippering in prostate cancer[J]. Cell Death Dis, 2016, 7(12): e2570. doi:10.1038/cddis.2016.420 |
| [27] | Yuan CZ, Hu H, Kuang MY, et al. Super enhancer associated RAI14 is a new potential biomarker in lung adenocarcinoma[J]. Oncotarget, 2017, 8(62): 105251-61. doi:10.18632/oncotarget.22165 |
| [28] | Wang JL, Cai Y, Luo JD, et al. RAI14 silencing suppresses progression of esophageal cancer via the STAT3 pathway[J]. Aging (Albany NY), 2020, 12(18): 18084-98. doi:10.18632/aging.103613 |
| [29] | Xu J, Shi PF, Xia FW, et al. RAI14 promotes melanoma progression by regulating the FBXO32/c-MYC pathway[J]. Int J Mol Sci, 2022, 23(19): 12036. doi:10.3390/ijms231912036 |
| [30] | Zhou J, Yong WP, Yap CS, et al. An integrative approach identified genes associated with drug response in gastric cancer[J]. Carcinogenesis, 2015, 36(4): 441-51. doi:10.1093/carcin/bgv014 |
| [31] | O’Donnell KA, Keng VW, York B, et al. A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer[J]. Proc Natl Acad Sci USA, 2012, 109(21): E1377-86. doi:10.1073/pnas.1115433109 |
| [32] | Ono K, Demchak B, Ideker T. Cytoscape tools for the web age: D3.js and cytoscape.js exporters[J]. F1000Res, 2014, 3: 143. doi:10.12688/f1000research.4510.2 |
| [33] | Tang Y, Li M, Wang JX, et al. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks[J]. Biosystems, 2015, 127: 67-72. doi:10.1016/j.biosystems.2014.11.005 |
| [34] | Cui RL, Zou J, Zhao Y, et al. The dual-crosslinked prospective values of RAI14 for the diagnosis and chemosurveillance in triple negative breast cancer[J]. Ann Med, 2023, 55(1): 820-36. doi:10.1080/07853890.2023.2177722 |
| [1] | Ziwei YANG, Chang LÜ, Zhu DONG, Shulei JI, Shenghui BI, Xuehua ZHANG, Xiaowu WANG. Rosa laevigata Michx. inhibits pulmonary arterial smooth muscle cell proliferation in hypertension by modulating the Src-AKT1 axis [J]. Journal of Southern Medical University, 2025, 45(9): 1889-1902. |
| [2] | Ziliang WANG, Xiaohua CHEN, Jingjing YANG, Chen YAN, Zhizhi ZHANG, Bingyi HUANG, Meng ZHAO, Song LIU, Sitang GE, Lugen ZUO, Deli CHEN. High expression of SURF4 promotes migration, invasion and proliferation of gastric cancer cells by inhibiting tight junction proteins [J]. Journal of Southern Medical University, 2025, 45(8): 1732-1742. |
| [3] | Xinyuan CHEN, Chengting WU, Ruidi LI, Xueqin PAN, Yaodan ZHANG, Junyu TAO, Caizhi LIN. Shuangshu Decoction inhibits growth of gastric cancer cell xenografts by promoting cell ferroptosis via the P53/SLC7A11/GPX4 axis [J]. Journal of Southern Medical University, 2025, 45(7): 1363-1371. |
| [4] | Ting XIE, Yunyun WANG, Ting GUO, Chunhua YUAN. The peptide toxin components and nucleotide metabolites in Macrothele raveni venom synergistically inhibit cancer cell proliferation by activating the pro-apoptotic pathways [J]. Journal of Southern Medical University, 2025, 45(7): 1460-1470. |
| [5] | Xiuying GONG, Shunfu HOU, Miaomiao ZHAO, Xiaona WANG, Zhihan ZHANG, Qinghua LIU, Chonggao YIN, Hongli LI. LncRNA SNHG15 promotes proliferation, migration and invasion of lung adenocarcinoma cells by regulating COX6B1 through sponge adsorption of miR-30b-3p [J]. Journal of Southern Medical University, 2025, 45(7): 1498-1505. |
| [6] | Xuan WU, Jiamin FANG, Weiwei HAN, Lin CHEN, Jing SUN, Qili JIN. High PRELID1 expression promotes epithelial-mesenchymal transition in gastric cancer cells and is associated with poor prognosis [J]. Journal of Southern Medical University, 2025, 45(7): 1535-1542. |
| [7] | Jiahao LI, Ruiting XIAN, Rong LI. Down-regulation of ACADM-mediated lipotoxicity inhibits invasion and metastasis of estrogen receptor-positive breast cancer cells [J]. Journal of Southern Medical University, 2025, 45(6): 1163-1173. |
| [8] | Xinrui HOU, Zhendong ZHANG, Mingyuan CAO, Yuxin DU, Xiaoping WANG. Salidroside inhibits proliferation of gastric cancer cells by regulating the miR-1343-3p-OGDHL/PDHB glucose metabolic axis [J]. Journal of Southern Medical University, 2025, 45(6): 1226-1239. |
| [9] | Yumei ZENG, Jike LI, Zhongxi HUANG, Yibo ZHOU. Villin-like protein VILL suppresses proliferation of nasopharyngeal carcinoma cells by interacting with LMO7 protein [J]. Journal of Southern Medical University, 2025, 45(5): 954-961. |
| [10] | Yaqing YUE, Zhaoxia MU, Xibo WANG, Yan LIU. Aurora-A overexpression promotes cervical cancer cell invasion and metastasis by activating the NF-κBp65/ARPC4 signaling axis [J]. Journal of Southern Medical University, 2025, 45(4): 837-843. |
| [11] | Yi ZHANG, Yu SHEN, Zhiqiang WAN, Song TAO, Yakui LIU, Shuanhu WANG. High expression of CDKN3 promotes migration and invasion of gastric cancer cells by regulating the p53/NF-κB signaling pathway and inhibiting cell apoptosis [J]. Journal of Southern Medical University, 2025, 45(4): 853-861. |
| [12] | Shunjie QING, Zhiyong SHEN. High expression of hexokinase 2 promotes proliferation, migration and invasion of colorectal cancer cells by activating the JAK/STAT pathway and regulating tumor immune microenvironment [J]. Journal of Southern Medical University, 2025, 45(3): 542-553. |
| [13] | Qingqing HUANG, Wenjing ZHANG, Xiaofeng ZHANG, Lian WANG, Xue SONG, Zhijun GENG, Lugen ZUO, Yueyue WANG, Jing LI, Jianguo HU. High MYO1B expression promotes proliferation, migration and invasion of gastric cancer cells and is associated with poor patient prognosis [J]. Journal of Southern Medical University, 2025, 45(3): 622-631. |
| [14] | Xue SONG, Yue CHEN, Min ZHANG, Nuo ZHANG, Lugen ZUO, Jing LI, Zhijun GENG, Xiaofeng ZHANG, Yueyue WANG, Lian WANG, Jianguo HU. GPSM2 is highly expressed in gastric cancer to affect patient prognosis by promoting tumor cell proliferation [J]. Journal of Southern Medical University, 2025, 45(2): 229-238. |
| [15] | Jinhua ZOU, Hui WANG, Dongyan ZHANG. SLC1A5 overexpression accelerates progression of hepatocellular carcinoma by promoting M2 polarization of macrophages [J]. Journal of Southern Medical University, 2025, 45(2): 269-284. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||