Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (10): 1898-1909.doi: 10.12122/j.issn.1673-4254.2024.10.08
Yonghua LI(), Xinran XI, Meng ZHANG, Xun WU, Xianghai WANG(
)
Received:
2024-05-31
Online:
2024-10-20
Published:
2024-10-31
Contact:
Xianghai WANG
E-mail:liyonghua562023@163.com;wxhwxpcyy@163.com
Yonghua LI, Xinran XI, Meng ZHANG, Xun WU, Xianghai WANG. High expression of LINC00467 promotes proliferation and metastasis of lung adenocarcinoma cells by suppressing autophagy via inhibiting the AMPK/mTOR pathway[J]. Journal of Southern Medical University, 2024, 44(10): 1898-1909.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.10.08
Fig.3 Correlation of LINC00467 expression level with survival rates (A) and clinical stages (B) of lung adenocarcinoma patients. *P<0.05 vs Stage I group; **P<0.01 vs Stage II group.
Fig.4 Interference efficiency of Shlinc00467 in A549 and H1299 cells. A: Transfection effect of Shlinc00467 (Original magnification: ×10); B: Quantification of the interference efficiency. **P<0.01 vs shNC group.
Fig.5 Effect of LINC00467 knockdown on proliferation of lung adenocarcinoma cells. A: Colony formation assay for assessing cell proliferation. B: Quantification of the colony number. **P<0.01 vs shNC group.
Fig.6 Effect of LINC00467 knockdown on lung adenocarcinoma cell metastasis. A: Transwell assay for assessing cell migration and invasion (×10). B, C: Numbers of migrating and invading cells. ***P<0.001 vs shNC group.
Fig.7 Effects of LINC00467 knockdown on autophagy and AMPK/mTOR signaling pathways in lung adenocarcinoma cells. A: Immunofluorescence staining for detecting LC3 expression (×40). B, D: Western blotting of AMPK, p-AMPK, mTOR, p-mTOR, and LC3II/I proteins. C, E: Expression levels of p-AMPK/AMPK, p-mTOR/mTOR, LC3II/I, and p62. *P<0.05, **P<0.01 vs shNC group.
Fig.9 Effects of the autophagy inhibitor on autophagy of lung adenocarcinoma cells with LINC00467 knockdown. A: Immunofluorescence staining for LC3 expression (×40). B, C: Western blotting for detecting LC3II, LCI and p62 proteins. D-G: Quantification of LC3II/I and p62 protein levels.*P<0.05, **P<0.01, ***P<0.001 vs shNC group; #P<0.05, ##P<0.01 vs shlinc00467 group.
Fig.10 LINC00467 knockdown inhibits proliferation of lung adenocarcinoma cells by suppressing autophagy. A: Colony formation assay for evaluating cell proliferation. B: Quantification of the colony number. ***P<0.001 vs shNC group; ###P<0.01 vs shlinc00467 group.
Fig.11 LINC00467 knockdown suppresses lung adenocarcinoma cell metastasis by regulating autophagy. A, C: Transwell assay for assessing cell migration and invasion (×10). B, D: Numbers of migrating and invading cells. **P<0.01 vs shNC group; #P<0.05, ##P<0.01, ###P<0.001 vs shlinc00467 group.
Fig.12 LINC00467 knockdown suppresses autophagy in lung adenocarcinoma cells by inhibiting the AMPK/mTOR signaling pathway. A,C: Western blotting for detecting AMPK, p-AMPK, mTOR, p-mTOR, LC3II, LC3I, and p62 proteins. B, D: Quantification of p-AMPK/AMPK, p-mTOR/mTOR, LC3II/I, and p62 protein levels. *P<0.05, **P<0.01 vs shNC group; #P<0.05 vs shlinc00467 group.
Fig.13 LINC00467 knockdown suppresses lung adenocarcinoma cell proliferation by inhibiting the AMPK/mTOR signaling pathway. A: Colony formation assay for assessing cell proliferation. B: Quantification of colony formation number. *P<0.05, **P<0.01, ***P<0.001 vs shNC group; #P<0.05, ##P<0.01 vs shlincC00467 group.
Fig.14 LINC00467 knockdown suppresses lung adenocarcinoma cell migration by inhibiting the AMPK/mTOR signaling pathway. A, C: Transwell assay for assessing cell migration and invasion (×10). B, D: Number of migrating and invading cells. *P<0.05, **P<0.01 vs shNC group; ##P<0.01 vs shlinc00467 group.
1 | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-63. |
2 | Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. |
3 | Sasaki T, Kuno H, Hiyama T, et al. 2021 WHO classification of lung cancer: molecular biology research and radiologic-pathologic correlation[J]. Radiographics, 2024, 44(3): e230136. |
4 | Li ST, Wang AX, Wu YY, et al. Targeted therapy for non-small-cell lung cancer: new insights into regulated cell death combined with immunotherapy[J]. Immunol Rev, 2024, 321(1): 300-34. |
5 | Taniue K, Akimitsu N. The functions and unique features of LncRNAs in cancer development and tumorigenesis[J]. Int J Mol Sci, 2021, 22(2): 632. |
6 | Ahmad M, Weiswald LB, Poulain L, et al. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk[J]. J Exp Clin Cancer Res, 2023, 42(1): 173. |
7 | Wu D, Li RF, Liu JY, et al. Long noncoding RNA LINC00467: role in various human cancers[J]. Front Genet, 2022, 13: 892009. |
8 | Wang W, Bo H, Liang YM, et al. LINC00467 is upregulated by DNA copy number amplification and hypomethylation and shows ceRNA potential in lung adenocarcinoma[J]. Front Endocrinol, 2021, 12: 802463. |
9 | Ding H, Luo YC, Hu K, et al. Linc00467 promotes lung adenocarcinoma proliferation via sponging miR-20b-5p to activate CCND1 expression[J]. Onco Targets Ther, 2019, 12: 6733-43. |
10 | Wang XH, Liu HB, Shen KK, et al. Long intergenic non-coding RNA 00467 promotes lung adenocarcinoma proliferation, migration and invasion by binding with EZH2 and repressing HTRA3 expression[J]. Mol Med Rep, 2019, 20(1): 640-54. |
11 | Yang JL, Liu YD, Mai XS, et al. STAT1-induced upregulation of LINC00467 promotes the proliferation migration of lung adenocarcinoma cells by epigenetically silencing DKK1 to activate Wnt/β‑catenin signaling pathway[J]. Biochem Biophys Res Commun, 2019, 514(1): 118-26. |
12 | Yamamoto H, Matsui T. Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy[J]. Nippon Ika Daigaku Zasshi, 2024, 91(1): 2-9. |
13 | Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer[J]. Nat Rev Mol Cell Biol, 2023, 24: 560-75. |
14 | Biswas U, Roy R, Ghosh S, et al. The interplay between autophagy and apoptosis: its implication in lung cancer and therapeutics[J]. Cancer Lett, 2024, 585: 216662. |
15 | Alers S, Löffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks[J]. Mol Cell Biol, 2012, 32(1): 2-11. |
16 | Li YJ, Chen YY. AMPK and autophagy[J]. Adv Exp Med Biol, 2019, 1206: 85-108. |
17 | Noda T. Regulation of autophagy through TORC1 and mTORC1[J]. Biomolecules, 2017, 7(3): 52. |
18 | Mesko S, Gomez D. Proton therapy in non-small cell lung cancer[J]. Curr Treat Options Oncol, 2018, 19(12): 76. |
19 | Qi C, Ma JM, Sun JJ, et al. The role of molecular subtypes and immune infiltration characteristics based on disulfidptosis-associated genes in lung adenocarcinoma[J]. Aging, 2023, 15(11): 5075-95. |
20 | Yao ZT, Yang YM, Sun MM, et al. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer[J]. Cancer Commun, 2022, 42(2): 117-40. |
21 | Chen XY, Luo Q, Xiao YN, et al. LINC00467: an oncogenic long noncoding RNA[J]. Cancer Cell Int, 2022, 22(1): 303. |
22 | Ghafouri-Fard S, Khoshbakht T, Hussen BM, et al. A review on the role of LINC00467 in the carcinogenesis[J]. Cancer Cell Int, 2022, 22(1): 319. |
23 | Changizian M, Nourisanami F, Hajpoor V, et al. LINC00467: a key oncogenic long non-coding RNA[J]. Clin Chim Acta, 2022, 536: 112-25. |
24 | Zhu YX, Li JJ, Bo H, et al. LINC00467 is up-regulated by TDG-mediated acetylation in non-small cell lung cancer and promotes tumor progression[J]. Oncogene, 2020, 39(38): 6071-84. |
25 | Chang YX, Yang LS. LINC00467 promotes cell proliferation and stemness in lung adenocarcinoma by sponging miR-4779 and miR-7978[J]. J Cell Biochem, 2020, 121(8/9): 3691-9. |
26 | Liu SZ, Yao SJ, Yang H, et al. Autophagy: regulator of cell death[J]. Cell Death Dis, 2023, 14(10): 648. |
27 | Sedlackova L, Kataura T, Sarkar S, et al. Metabolic function of autophagy is essential for cell survival[J]. Autophagy, 2023, 19(8): 2395-7. |
28 | Bai ZS, Peng YL, Ye XY, et al. Autophagy and cancer treatment: four functional forms of autophagy and their therapeutic applications[J]. J Zhejiang Univ Sci B, 2022, 23(2): 89-101. |
29 | Sun T. Long noncoding RNAs act as regulators of autophagy in cancer[J]. Pharmacol Res, 2018, 129: 151-5. |
30 | Wu JC, Huang XB, Li XF, et al. Suppression of the long non-coding RNA LINC01279 triggers autophagy and apoptosis in lung cancer by regulating FAK and SIN3A[J]. Discov Oncol, 2024, 15(1): 3. |
31 | Zhao HJ, Wang YH, Wu X, et al. FAM83A antisense RNA 1 (FAM83A-AS1) silencing impairs cell proliferation and induces autophagy via MET-AMPKɑ signaling in lung adenocarcinoma[J]. Bioengineered, 2022, 13(5): 13312-27. |
32 | Xiao L, Li Y, Zeng XF, et al. Silencing of LOC389641 impairs cell proliferation and induces autophagy via EGFR/MET signaling in lung adenocarcinoma[J]. Aging, 2020, 13(2): 2539-52. |
33 | Song Y, Du JK, Lu PL, et al. LncRNA NFYC-AS1 promotes the development of lung adenocarcinomas through autophagy, apoptosis, and MET/c-Myc oncogenic proteins[J]. Ann Transl Med, 2021, 9(21): 1621. |
34 | González A, Hall MN, Lin SC, et al. AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control[J]. Cell Metab, 2020, 31(3): 472-92. |
35 | Fukuda T, Shiozaki K. Multiplexed suppression of TOR complex 1 induces autophagy during starvation[J]. Autophagy, 2021, 17(7): 1794-5. |
36 | Yuan WB, Fang WY, Zhang R, et al. Therapeutic strategies targeting AMPK-dependent autophagy in cancer cells[J]. Biochim Biophys Acta Mol Cell Res, 2023, 1870(7): 119537. |
37 | Liu XW, Xiao ZD, Han L, et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress[J]. Nat Cell Biol, 2016, 18(4): 431-42. |
38 | Saha S, Zhang Y, Wilson B, et al. The tumor-suppressive long noncoding RNA DRAIC inhibits protein translation and induces autophagy by activating AMPK[J]. J Cell Sci, 2021, 134(24): jcs259306. |
[1] | Xiaohua CHEN, Hui LU, Ziliang WANG, Lian WANG, Yongsheng XIA, Zhijun GENG, Xiaofeng ZHANG, Xue SONG, Yueyue WANG, Jing LI, Jianguo HU, Lugen ZUO. Role of Abelson interactor 2 in progression and prognosis of gastric cancer and its regulatory mechanisms [J]. Journal of Southern Medical University, 2024, 44(9): 1653-1661. |
[2] | Liangjun XUE, Qiuyu TAN, Jingwen XU, Lu FENG, Wenjin LI, Liang YAN, Yulei LI. MiR-6838-5p overexpression inhibits proliferation of breast cancer MCF-7 cells by downregulating DDR1 expression [J]. Journal of Southern Medical University, 2024, 44(9): 1677-1684. |
[3] | Kai JI, Guanyu YU, Leqi ZHOU, Tianshuai ZHANG, Qianlong LING, Wenjiang MAN, Bing ZHU, Wei ZHANG. HNRNPA1 gene is highly expressed in colorectal cancer: its prognostic implications and potential as a therapeutic target [J]. Journal of Southern Medical University, 2024, 44(9): 1685-1695. |
[4] | Yidan PANG, Ya LIU, Siai CHEN, Jinglei ZHANG, Jin ZENG, Yuanming PAN, Juan AN. Biological role of SPAG5 in the malignant proliferation of gastric cancer cells [J]. Journal of Southern Medical University, 2024, 44(8): 1497-1507. |
[5] | Mingyang ZHU, Bokang WANG, Xiusen ZHANG, Kexu ZHOU, Zeyu MIAO, Jiangtao SUN. Assessment of baseline CCL19+ dendritic cell infiltration for predicting responses to immunotherapy in lung adenocarcinoma patients [J]. Journal of Southern Medical University, 2024, 44(8): 1529-1536. |
[6] | Xiaofan CONG, Teng CHEN, Shuo LI, Yuanyuan WANG, Longyun ZHOU, Xiaolong LI, Pei ZHANG, Xiaojin SUN, Surong ZHAO. Dihydroartemisinin enhances sensitivity of nasopharyngeal carcinoma HNE1/DDP cells to cisplatin-induced apoptosis by promoting ROS production [J]. Journal of Southern Medical University, 2024, 44(8): 1553-1560. |
[7] | Yao CHENG, Yuanying WANG, Feiyang YAO, Pan HU, Mingxian CHEN, Ning WU. Baicalin suppresses type 2 dengue virus-induced autophagy of human umbilical vein endothelial cells by inhibiting the PI3K/AKT pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1272-1283. |
[8] | Yeming ZHANG, Yuanxiang ZHANG, Xuebin SHEN, Guodong WANG, Lei ZHU. MiRNA-103-3p promotes neural cell autophagy by activating Wnt/β-catenin signaling via targeting rab10 in a rat model of depression [J]. Journal of Southern Medical University, 2024, 44(7): 1315-1326. |
[9] | Qianyi CHEN, Shuhan SHANG, Huan LU, Sisi LI, Zhimian SUN, Xirui FAN, Zhilin QI. Calenduloside E inhibits hepatocellular carcinoma cell proliferation and migration by down-regulating GPX4 and SLC7A11 expression through the autophagy pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1327-1335. |
[10] | Mengdong ZHENG, Yan LIU, Jiaojiao LIU, Qiaozhen KANG, Ting WANG. Effect of deletion of protein 4.1R on proliferation, apoptosis and glycolysis of hepatocyte HL-7702 cells [J]. Journal of Southern Medical University, 2024, 44(7): 1355-1360. |
[11] | Huaxing HE, Lulin LIU, Yingyin LIU, Nachuan CHEN, Suxia SUN. Sodium butyrate and sorafenib synergistically inhibit hepatocellular carcinoma cells possibly by inducing ferroptosis through inhibiting YAP [J]. Journal of Southern Medical University, 2024, 44(7): 1425-1430. |
[12] | Jincun FANG, Liwei LIU, Junhao LIN, Fengsheng CHEN. Overexpression of CDHR2 inhibits proliferation of breast cancer cells by inhibiting the PI3K/Akt pathway [J]. Journal of Southern Medical University, 2024, 44(6): 1117-1125. |
[13] | Chang SUN, Shiyao ZHENG, Mei LI, Ming YANG, Mengyuan QIN, Yuan XU, Weihua LIANG, Jianmin HU, Lianghai WANG, Feng LI, Hong ZHOU, Lan YANG. High expression of the stemness-associated molecule Nanog in esophageal squamous cell carcinoma tissues promotes tumor invasion and metastasis by activating the TGF‑β signaling pathway [J]. Journal of Southern Medical University, 2024, 44(6): 1209-1216. |
[14] | Yongsheng XIA, Lian WANG, Xiaohua CHEN, Yulu ZHANG, Aofei SUN, Deli CHEN. TSR2 overexpression inhibits proliferation and invasion of gastric cancer cells by downregulating the PI3K/AKT signaling pathway [J]. Journal of Southern Medical University, 2024, 44(5): 913-919. |
[15] | Leilei SHEN, Ying CHEN, Tianyang YUN, Juntang GUO, Xi LIU, Tao ZHANG, Chaoyang LIANG, Yang LIU. Selection of postoperative adjuvant therapy for patients with stage IB lung adenocarcinoma: analysis of 653 cases [J]. Journal of Southern Medical University, 2024, 44(5): 989-997. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||